Do you want to publish a course? Click here

Processing of 24 Micron Image Data at the Spitzer Science Center

97   0   0.0 ( 0 )
 Added by Frank Masci
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The 24 micron array on board the Spitzer Space Telescope is one of three arrays in the Multi-band Imaging Photometer for Spitzer (MIPS) instrument. It provides 5.3 x 5.3 arcmin images at a scale of ~2.5 arcsec per pixel corresponding to sampling of the point spread function which is slightly better than critical (~0.4lambda/D). A scan-mirror allows dithering of images on the array without the overhead of moving and stabilizing the spacecraft. It also enables efficient mapping of large areas of sky without significant compromise in sensitivity. We present an overview of the pipeline flow and reduction steps involved in the processing of image data acquired with the 24 micron array. Residual instrumental signatures not yet removed in automated processing and strategies for hands-on mitigation thereof are also given.



rate research

Read More

337 - D. Lutz , L. Yan , L. Armus 2005
We present MAMBO 1.2mm observations of 40 extragalactic sources from the Spitzer First Look Survey that are bright in the mid-infrared (S_24um>1mJy) but optically obscured (log_10 (nu F_nu (24um))/(nu F_nu (0.7um))>1). We use these observations to search for cold dust emission, probing the similarity of their spectral energy distributions to star forming infrared galaxies or obscured AGN. The sample as a whole is well detected at mean S_1.2mm=0.74+-0.09mJy and S_1.2mm/S_24um=0.15+-0.03. Seven (three) of the sources are individually detected at >3sigma (>5sigma) levels. Mean millimeter fluxes are higher for sources with the reddest mid-infrared/optical colors. Optically faint but with relatively low mm to mid-infrared ratio, the typical SEDs are inconsistent with redshifted SED shapes of local star-forming infrared galaxies. They also differ from SEDs of typical submillimeter selected galaxies, with the 24um sources that are individually detected by MAMBO possibly representing intermediate objects. Compared to star-forming galaxies, a stronger but optically obscured mid-infrared component without associated strong far-infrared emission has to be included. This component may be due to luminous optically obscured AGN, which would represent a significant part of the high redshift AGN population.
435 - Casey Papovich 2004
Galaxy source counts in the infrared provide strong constraints on the evolution of the bolometric energy output from distant galaxy populations. We present the results from deep 24 micron imaging from Spitzer surveys, which include approximately 50,000 sources to an 80% completeness of 60 uJy. The 24 micron counts rapidly rise at near-Euclidean rates down to 5 mJy, increase with a super-Euclidean rate between 0.4 - 4 mJy, and converge below 0.3 mJy. The 24 micron counts exceed expectations from non-evolving models by a factor >10 at 0.1 mJy. The peak in the differential number counts corresponds to a population of faint sources that is not expected from predictions based on 15 micron counts from ISO. We argue that this implies the existence of a previously undetected population of infrared-luminous galaxies at z ~ 1-3. Integrating the counts to 60 uJy, we derive a lower limit on the 24 micron background intensity of 1.9 +/- 0.6 nW m-2 sr-1 of which the majority (~ 60%) stems from sources fainter than 0.4 mJy. Extrapolating to fainter flux densities, sources below 60 uJy contribute 0.8 {+0.9/-0.4} nW m-2 sr-1 to the background, which provides an estimate of the total 24 micron background of 2.7 {+1.1/-0.7} nW m-2 sr-1.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne astronomical observatory comprised of a 2.5-meter telescope mounted in the aft section of a Boeing 747SP aircraft. During routine operations, several instruments will be available to the astronomical community including cameras and spectrographs in the near- to far-IR. Raw data obtained in-flight require a significant amount of processing to correct for background emission (from both the telescope and atmosphere), remove instrumental artifacts, correct for atmospheric absorption, and apply both wavelength and flux calibration. In general, this processing is highly specific to the instrument and telescope. In order to maximize the scientific output of the observatory, the SOFIA Science Center must provide these post-processed data sets to Guest Investigators in a timely manner. To meet this requirement, we have designed and built the SOFIA Data Processing System (DPS): an in-house set of tools and services that can be used in both automatic (pipeline) and manual modes to process data from a variety of instruments. Here we present an overview of the DPS concepts and architecture, as well as operational results from the first two SOFIA observing cycles (2013--2014).
61 - Z. Balog 2006
We present 24 micron images of three protoplanetary disks being photoevaporated around high mass O type stars. These objects have ``cometary structure where the dust pulled away from the disk by the photoevaporating flow is forced away from the O star by photon pressure on the dust and heating and ionization of the gas. Models of the 24 micron and 8 micron brightness profiles agree with this hypothesis. These models show that the mass-loss rate needed to sustain such a configuration is in agreement with or somewhat less than the theoretical predictions for the photoevaporation process.
Spitzer-MIPS 24 micron and ground-based observations of the rich galaxy cluster Abell 851 at z=0.41 are used to derive star formation rates from the mid-IR 24 micron and from [O II] 3727 emission. Many cluster galaxies have SFR(24 um)/SFR([O II]) >> 1, indicative of star formation highly obscured by dust. We focus on the substantial minority of A851 cluster members where strong Balmer absorption points to a starburst on a 10^{8-9} year timescale. As is typical, A851 galaxies with strong Balmer absorption occur in two types: with optical emission (starforming), and without (post-starburst). Our principal result is the former, so-called e(a) galaxies, are mostly detected (9 out of 12) at 24 um -- for these we find typically SFR(24 um)/SFR([O II]) ~ 4. Strong Balmer absorption and high values of SFR(24 um)/SFR([O II]) both indicate moderately active starbursts and support the picture that e(a) galaxies are the active starbursts that feed the post-starburst population. While 24 um detections are frequent with Balmer-strong objects (even 6 out of 18 of the supposedly post-starburst galaxies are detected) only 2 out of 7 of the continuously starforming `e(c) galaxies (with weak Balmer absorption) are detected -- for them, SFR(24 um)/SFR([O II]) ~ 1. Their optical spectra resemble present-epoch spirals that dominate todays universe; we strengthen this association by that SFR(24 um)/SFR([O II]) ~ 1 is the norm today. That is, not just the amount of star formation, but its mode, has evolved strongly from z ~ 0.4 to the present. By fitting spectrophotometric models we measure the strength and duration of the bursts to quantify the evolutionary sequence from active- to post-starburst, and to harden the evidence that moderately active starbursts are the defining feature of starforming cluster galaxies at z ~ 0.4.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا