We present preliminary results of an observation of Cygnus X-1 with INTEGRAL performed on June 7-11 2003. Both spectral and variability properties of the source indicate that Cygnus X-1 was in an intermediate state. As expected during state transitions, we find an anticorrelation between the 3-10 keV and the 15 GHz radio fluxes and a strong correlation between the 3-200 keV hardness and radio flux.
We report the results of an observation of Cygnus X-1 with INTEGRAL, that we combine with simultaneous radio observations with the Ryle telescope. Both spectral and variability properties of the source indicate that Cygnus X-1 was in an Intermediate State. The INTEGRAL spectrum shows a high-energy cut-off or break around 100 keV. The shape of this cut-off differs from pure thermal Comptonisation, suggesting the presence of a non-thermal component at higher energies.The average broad band spectrum is well represented by hybrid thermal/non-thermal Comptonisation models. During the 4 day long observation the source showed an important spectral and flux variability. A principal component analysis demonstrates that most of this variability occurs through 2 independent modes. The first mode consists in changes in the overall luminosity on time scale of hours with almost constant spectra that are strikingly uncorrelated with the variable radio flux. We interpret this variability mode as variations of the dissipation rate in the corona. The second variability mode consists in a pivoting of the spectrum around 10 keV. It acts on a longer time-scale: initially soft, the spectrum hardens in the first part of the observation and then softens again. This pivoting pattern is strongly correlated with the radio (15 GHz) emission: radio fluxes are stronger when the INTEGRAL spectrum is harder. We propose that the pivoting mode represents a mini state transition from a nearly High Soft State to a nearly Low Hard State, and back. This mini-transition would be caused by changes in the soft cooling photons flux in the hot Comptonising plasma associated with an increase of the temperature of the accretion disc. The jet power then appears to be anti-correlated with the disc luminosity and unrelated to the coronal power.
Cygnus X-1 is a high-mass x-ray binary with a black hole compact object. It is normally extremely bright in hard x-rays and low energy gamma rays and resides in the canonical hard spectral state. Recently, however, Cyg X-1 made a transition to the canonical soft state, with a rise in the soft x-ray flux and a decrease in the flux in the hard x-ray and low energy gamma-ray energy bands. We have been using the Gamma-Ray Burst Monitor on Fermi to monitor the fluxes of a number of sources in the 8--1000 keV energy range, including Cyg X-1. We present light curves of Cyg X-1 showing the flux decrease in hard x-ray and low energy gamma-ray energy bands during the state transition as well as the several long flares observed in these higher energies during the soft state. We also present preliminary spectra from GBM for the pre-transition state, showing the spectral evolution to the soft state, and the post-transition state.
X-ray shots of Cyg X-1 in different energy bands and spectral states have been studied with PCA/RXTE observations. The detailed shot structure is obtained by superposing many shots with one millisecond time bin through aligning their peaks with an improved algorithm. In general, the shots are composed of a slow rise and fast decay. The shot structures in the different states are different. The duration of shot in the high state is shorter than that in the low and transition states. The shot profile in the high energy band is more asymmetric and narrower than that in the low energy band. The average hardness of shot is lower than that of steady emission in the transition and low states but higher than that in the high state. The time lags between the shots in higher and lower energy bands have been found in the different states. In transition states, the time lag is the largest among the different states of Cyg X-1, and it is the smallest in the low state. The implications of the observed shot features for shot models are discussed.
The star HDE 226868 known as an optical counterpart of the black hole candidate Cyg X-1 has been observed in H_alpha region using spectrograph at Ondrejov 2-m telescope. The orbital parameters are determined from HeI-line by means of the authors method of Fourier disentangling. Preliminary results are also presented of disentangling the H_alpha-line into a P-Cyg profile of the (optical) primary and an emission profile of the circumstellar matter (and a telluric component).
We present highlights from a series of four simultaneous Suzaku/RXTE observations of the black hole candidate Cyg X-1. We briefly summarize several key results from our decade long RXTE monitoring campaign. We then comment on challenges of analyzing the Suzaku data, i.e., improving the aspect correction beyond that of the existing tools, and quantitatively assessing pileup. All of our Suzaku observations (one, by design) occurred at or very near orbital phase 0 (superior conjunction), and hence show evolution in color-color diagrams due to X-ray absorption by material from the wind of the secondary. We present simple partial absorption models for this evolution. We then compare the Suzaku and RXTE data, and explicitly divide the Fe line region into narrow and broad components. Both are required for the Suzaku data, and are seen to be consistent with the RXTE data. These Suzaku observations occurred near historically hard, low flux states. We present fits of the broad band spectra with a simple phenomenological broken powerlaw model, as well as a more physically motivated Comptonization model. Whereas the former class of models described nearly all of the RXTE campaign better than any physical model, here the latter model is slightly more successful. The Comptonization model, however, exhibits little evidence for a soft disk component, which formally corresponds to a small, inner disk radius. Whether this is physical, due to unmodeled absorption, or is a calibration issue, remains an open question.
Log in to be able to interact and post comments
comments
Fetching comments
Sorry, something went wrong while fetching comments!