I review the observational characteristics of intermediate-to-high redshift star forming galaxies, including their star formation rates, dust extinctions, ISM kinematics, and chemical compositions. I present evidence that the mean rate of metal enrichment, Delta{Z}/Delta{z}, from z=0--3, as determined from nebular oxygen abundance measurements in star forming galaxies, is 0.15 dex per redshift unit for galaxies more luminous than M_B=-20.5. This rate of chemical enrichment is consistent with the chemical rise in Galactic disk stars. It is less dramatic than, but perhaps consistent with, the enrichment rate of 0.18--0.26+/-0.07 dex per redshift unit seen in Damped Ly alpha systems, and it is much less than predicted by many cosmological evolution models. The high-redshift galaxies observed to date are the most luminous examples from those epochs, and thus, trace only the greatest cosmological overdensities. Star formation in the first 1-2 Gyr appears sufficient to elevate ambient metallicities to near or above the solar value, implying efficient production and retention of metals in these densest environments.