Do you want to publish a course? Click here

Line formation in solar granulation VI. [C I], C I, CH and C2 lines and the photospheric C abundance

101   0   0.0 ( 0 )
 Added by Martin Asplund
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The solar photospheric carbon abundance has been determined from [C I], C I, CH vibration-rotation, CH A-X electronic and C2 Swan electronic lines by means of a time-dependent, 3D, hydrodynamical model of the solar atmosphere. Departures from LTE have been considered for the C I lines. These turned out to be of increasing importance for stronger lines and are crucial to remove a trend in LTE abundances with the strengths of the lines. Very gratifying agreement is found among all the atomic and molecular abundance diagnostics in spite of their widely different line formation sensitivities. The mean of the solar carbon abundance based on the four primary abundance indicators ([C I], C I, CH vibration-rotation, C_2 Swan) is log C = 8.39 +/- 0.05, including our best estimate of possible systematic errors. Consistent results also come from the CH electronic lines, which we have relegated to a supporting role due to their sensitivity to the line broadening. The new 3D based solar C abundance is significantly lower than previously estimated in studies using 1D model atmospheres.



rate research

Read More

The solar photospheric oxygen abundance has been determined from [OI], OI, OH vibration-rotation and OH pure rotation lines by means of a realistic time-dependent, 3D, hydrodynamical model of the solar atmosphere. In the case of the OI lines, 3D non-LTE calculations have been performed, revealing significant departures from LTE as a result of photon losses in the lines. We derive a solar oxygen abundance of log O = 8.66 +/- 0.05. All oxygen diagnostics yield highly consistent abundances, in sharp contrast with the results of classical 1D model atmospheres. This low value is in good agreement with measurements of the local interstellar medium and nearby B stars. This low abundance is also supported by the excellent correspondence between lines of very different line formation sensitivities, and between the observed and predicted line shapes and center-to-limb variations. Together with the corresponding down-ward revisions of the solar carbon, nitrogen and neon abundances, the resulting significant decrease in solar metal mass fraction to Z = 0.0126 can, however, potentially spoil the impressive agreement between predicted and observed sound speed in the solar interior determined from helioseismology.
During a coordinated campaign which took place in May 2001, a C-class flare was observed both with SOHO instruments and with the Dunn Solar Telescope of the National Solar Observatory at Sacramento Peak. In two previous papers we have described the observations and discussed some dynamical aspects of the earlier phases of the flare, as well as the helium line formation in the active region prior to the event. Here we extend the analysis of the helium line formation to the later phases of the flare in two different locations of the flaring area. We have devised a new technique, exploiting all available information from various SOHO instruments, to determine the spectral distribution of the photoionizing EUV radiation produced by the corona overlying the two target regions. In order to find semiempirical models matching all of our observables, we analyzed the effect on the calculated helium spectrum both of A(He) (the He abundance) and of the uncertainties in the incident EUV radiation (level and spectral distribution). We found that the abundance has in most cases (but not in all) a larger effect than the coronal back-radiation. The result of our analysis is that, considering the error of the measured lines, and adopting our best estimate for the coronal EUV illumination, the value A(He)=0.075 +/- 0.010 in the chromosphere (for T>6300 K) and transition region yields reasonably good matches for all the observed lines. This value is marginally consistent with the most commonly accepted photospheric value: A(He)=0.085.
The C I 135.58 line is located in the wavelength range of NASAs Interface Region Imagin Spectrograph (IRIS) small explorer mission. We here study the formation and diagnostic potential of this line by means of non local-thermodynamic-equilibrium modeling, employing both 1D and 3D radiation-magnetohydrodynamic models. The C I/C II ionization balance is strongly influenced by photoionization by Ly-alpha emission. The emission in the C I 135.58 line is dominated by a recombination cascade and the line forming region is optically thick. The Doppler shift of the line correlates strongly with the vertical velocity in its line forming region, which is typically located at 1.5 Mm height. With IRIS the C I 135.58 line is usually observed together with the O I 135.56 line, and from the Doppler shift of both lines, we obtain the velocity difference between the line forming regions of the two lines. From the ratio of the C I/O I line core intensity, we can determine the distance between the C I and the O I forming layers. Combined with the velocity difference, the velocity gradient at mid-chromospheric heights can be derived. The C I/O I total intensity line ratio is correlated with the inverse of the electron density in the mid-chromosphere. We conclude that the C I 135.58 line is an excellent probe of the middle chromosphere by itself, and together with the O I 135.56 line the two lines provide even more information, which complements other powerful chromospheric diagnostics of IRIS such as the Mg II h and k lines and the C II lines around 133.5 nm.
We have been analyzing a large sample of solar-like stars with and without planets in order to homogeneously measure their photospheric parameters and Carbon abundances. Our sample contains around 200 stars in the solar neighborhood observed with the ELODIE spectrograph, for which the observational data are publicly available. We performed spectral synthesis of prominent bands of C$_{2}$ and C I lines, aiming to accurately obtain the C abundances. We intend to contribute homogeneous results to studies that compare elemental abundances in stars with and without known planets. New arguments will be brought forward to the discussion of possible chemical anomalies that have been suggested in the literature, leading us to a better understanding of the planetary formation process. In this work we focus on the C abundances in both stellar groups of our sample.
133 - Matthew Orr , Jorge Pineda , 2014
We present [Ci] and [Cii] observations of a linear edge region in the Taurus molecular cloud, and model this region as a cylindrically symmetric PDR exposed to a low-intensity UV radiation field. The sharp, long profile of the linear edge makes it an ideal case to test PDR models and determine cloud parameters. We compare observations of the [C i], 3P1 -> 3P0 (492 GHz), [C i] 3P2 -> 3P1 (809 GHz), and [Cii] 2P3/2 -> 2P1/2 (1900 GHz) transitions, as well as the lowest rotational transitions of 12CO and 13CO, with line intensities produced by the RATRAN radiative transfer code from the results of the Meudon PDR code. We constrain the density structure of the cloud by fitting a cylindrical density function to visual extinction data. We study the effects of variation of the FUV field, 12C/13C isotopic abundance ratio, sulfur depletion, cosmic ray ionization rate, and inclination of the filament relative to the sky-plane on the chemical network of the PDR model and resulting line emission. We also consider the role of suprathermal chemistry and density inhomogeneities. We find good agreement between the model and observations, and that the integrated line intensities can be explained by a PDR model with an external FUV field of 0.05 G0, a low ratio of 12C to 13C ~ 43, a highly depleted sulfur abundance (by a factor of at least 50), a cosmic ray ionization rate (3 - 6) x 10-17 s^-1, and without significant effects from inclination, clumping or suprathermal chemistry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا