Do you want to publish a course? Click here

SS 433: a WR X-ray binary or a WR-type phenomenon ?

95   0   0.0 ( 0 )
 Added by Yael Fuchs
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present mid-infrared spectra of the microquasar SS 433 obtained with the Infrared Space Observatory (spectroscopic mode of ISOPHOT) and compare them to the spectra of four Wolf-Rayet stars. The mid-infrared spectrum of SS 433 shows mainly HI and HeI emission lines and is very similar to the spectrum of WR 147, a WN8(h)+B0.5V binary with a colliding wind. The 2-12 micron continuum emission corresponds to optically thin and partially optically thick free-free emission from which we calculate a mass loss rate of 1.4-2.2x10^{-4} M_sun/yr if the wind is homogeneous and a third of these values if it is clumped, which is consistent with a strong WN stellar wind. We propose that this strong wind outflows from a geometrically thick envelope of material surrounding the compact object like a stellar atmosphere, imitating the Wolf-Rayet phenomenon.



rate research

Read More

Near infrared spectroscopy and photometry of the Wolf-Rayet Star WR 143 (HD 195177) were obtained in the $JHK$ photometric bands. High resolution spectra observed in the J and H bands exhibit narrow 1.083-micron He I line and the H I Pa Beta and the Brackett series lines in emission superposed on the broad emission line spectrum of the Wolf-Rayet star, giving strong indications of the presence of a companion. From the narrow emission lines observed, the companion is identified to be an early-type Be star. The photometric magnitudes exhibit variations in the JHK bands which are probably due to the variability of the companion star. The flux density distribution is too steep for a Wolf-Rayet atmosphere. This is identified to be mainly due to the increasing contribution from the early-type companion star towards shorter wavelengths.
124 - E. R. Parkin , E. Gosset 2011
We examine the dependence of the wind-wind collision and subsequent X-ray emission from the massive WR+O star binary WR~22 on the acceleration of the stellar winds, radiative cooling, and orbital motion. Simulations were performed with instantaneously accelerated and radiatively driven stellar winds. Radiative transfer calculations were performed on the simulation output to generate synthetic X-ray data, which are used to conduct a detailed comparison against observations. When instantaneously accelerated stellar winds are adopted in the simulation, a stable wind-wind collision region (WCR) is established at all orbital phases. In contrast, when the stellar winds are radiatively driven, and thus the acceleration regions of the winds are accounted for, the WCR is far more unstable. As the stars approach periastron, the ram pressure of the WRs wind overwhelms the O stars and, following a significant disruption of the shocks by non-linear thin-shell instabilities (NTSIs), the WCR collapses onto the O star. X-ray calculations reveal that when a stable WCR exists the models over-predict the observed X-ray flux by more than two orders of magnitude. The collapse of the WCR onto the O star substantially reduces the discrepancy in the $2-10;$keV flux to a factor of $simeq 6$ at $phi=0.994$. However, the observed spectrum is not well matched by the models. We conclude that the agreement between the models and observations could be improved by increasing the ratio of the mass-loss rates in favour of the WR star to the extent that a normal wind ram pressure balance does not occur at any orbital phase, potentially leading to a sustained collapse of the WCR onto the O star. Radiative braking may then play a significant r^{o}le for the WCR dynamics and resulting X-ray emission.
From the radial velocities of the N IV 4058 and He II 4686 emission lines, and the N V 4604-20 absorption lines, determined in digital spectra, we report the discovery that the X-ray bright emission line star Wack 2134 (= WR 21a) is a spectroscopic binary system with an orbital period of $31.673pm0.002$ days. With this period, the N IV and He II emission and N V absorption lines, which originate in the atmosphere of the primary component, define a rather eccentric binary orbit (e=0.64$pm$0.03). The radial velocity variations of the N V absorptions have a lower amplitude than those of the He II emission. Such a behaviour of the emission line radial velocities could be due to distortions produced by a superimposed absorption component from the companion. High resolution echelle spectra observed during the quadrature phases of the binary show H and He II absorptions of both components with a radial velocity difference of about 541 km/s. From this difference, we infer quite high values of the minimum masses, of about 87Mo and 53Mo for the primary and secondary components, respectively, if the radial velocity variations of the He II emission represent the true orbit of the primary. No He I absorption lines are observed in our spectra. Thus, the secondary component in the Wack2134 binary system appears to be an early O type star. From the presence of H, He II and N V absorptions, and N IV and C IV emissions, in the spectrum of the primary component, it most clearly resembles those of Of/WNLha type stars.
139 - Pol Bordas 2020
The detection of two sources of gamma rays towards the microquasar SS 433 has been recently reported. The first source can be associated with SS 433s eastern jet lobe, whereas the second source is variable and displays significant periodicity compatible with the precession period of the binary system, of about 160 days. The location of this variable component is not compatible with the location of SS 433 jets. To explain the observed phenomenology, a scenario based on the illumination of dense gas clouds by relativistic protons accelerated at the interface of the accretion disk envelope has been proposed. Energetic arguments strongly constrain this scenario, however, as it requires an unknown mechanism capable to periodically channel a large fraction of SS 433s kinetic energy towards an emitter located 36 parsec away from the central binary system.
We present results from a global view on the colliding-wind binary WR 147. We analysed new optical spectra of WR 147 obtained with Gran Telescopio CANARIAS and archive spectra from the Hubble Space Telescope by making use of modern atmosphere models accounting for optically thin clumping. We adopted a grid-modelling approach to derive some basic physical characteristics of both stellar components in WR 147. For the currently accepted distance of 630 pc to WR 147, the values of mass-loss rate derived from modelling its optical spectra are in acceptable correspondence with that from modelling its X-ray emission. However, they give a lower radio flux than observed. A plausible solution for this problem could be if the volume filling factor at large distances from the star (radio-formation region) is smaller than close to the star (optical-formation region). Adopting this, the model can match well both optical and thermal radio emission from WR 147. The global view on the colliding-wind binary WR 147 thus shows that its observational properties in different spectral domains can be explained in a self-consistent physical picture.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا