We present results from a coordinated FUSE, HST/STIS and Chandra campaign to study intrinsic UV and X-ray absorption in the outflow of the Seyfert 1 galaxy NGC 7469. Previous non-simultaneous observations of this outflow found two distinct UV absorption components, one of which likely corresponds to the X-ray absorber. The FUSE data reveal that the O VI absorption in this component has strengthened over time, as the continuum flux decreased. We use measured H I, N V, C IV, and O VI column densities to model self-consistently the photoionization state of the absorbers. We confirm the physical picture of the outflow in which the low velocity component is a highly ionized, high density absorber located near the broad emission line region, while the high velocity component is of lower density and resides farther from the central engine.