Do you want to publish a course? Click here

Probing the Kinematics of the Narrow-Line Region in Seyfert Galaxies with Slitless Spectroscopy: Observational Results

61   0   0.0 ( 0 )
 Added by D. Michael Crenshaw
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present slitless spectra of 10 Seyfert galaxies observed with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The spectra cover the [OIII] 4959, 5007 emission lines at a spectral resolving power of ~9000 and a spatial resolution of 0.1. We compare the slitless spectra with previous HST narrow-band images to determine the velocity shifts and dispersions of the bright emission-line knots in the narrow-line regions (NLRs) of these Seyferts. Many knots are spatially resolved with sizes of tenths of arcsecs, corresponding to tens of pcs, and yet they appear to move coherently with radial velocities between zero and +/- 1200 km/s with respect to the systemic velocities of their hostgalaxies. The knots also show a broad range in velocity dispersion, ranging from ~30 km/s (the velocity resolution) to ~1000 km/s FWHM. Most of the Seyfert galaxies in this sample show an organized flow pattern, with radial velocities near zero at the nucleus (defined by the optical continuum peak) and increasing to maximum blueshifts and redshifts within ~1 of the nucleus, followed by a decline to the systemic velocity. The emission-line knots also follow a general trend of decreasing velocity dispersion with increasing distance. In the Seyfert 2 galaxies, the presence of blueshifts and redshifts on either side of the nucleus indicates that rotation alone cannot explain the observed radial velocities, and that radial outflow plays an important role. Each of the Seyfert galaxies in this sample (with the exception of Mrk 3) shows a bright, compact (FWHM < 0.5) [O III] knot at the position of its optical nucleus. These nuclear emission-line knots have radial-velocity centroids near zero, but they typically have the highest velocity dispersions.

rate research

Read More

This work studies the optical emission line properties and physical conditions of the narrow line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1). Our results show that the flux carried out by the narrow component of H-beta is, on average, 50% of the total line flux. As a result, the [OIII] 5007/H-beta ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [OIII] 5007/H-beta ratio and the weakness of low-ionization lines of NLS1s. Variation of the relative proportion of these two type of clouds nicely reproduce the dispersion of narrow line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1s and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission line ratios between these two groups can be explained in terms of the shape of the input ionizing continuum. Narrow emission line ratios of NLS1s are better reproduced by a steep power-law continuum in the EUV -- soft X-ray region, with spectral index alpha ~ -2. Flatter spectral indices (alpha ~ -1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1s, which show that these objects are characterized by steeper power-law indices than those of Sy1 galaxies with strong broad optical lines.
376 - Nicola Bennert 2006
We study the narrow-line region (NLR) of six Seyfert-1 and six Seyfert-2 galaxies by means of spatially resolved optical spectroscopy and photoionization modelling. From spatially resolved spectral diagnostics, we find a transition between the AGN-excited NLR and the surrounding star-forming regions, allowing us to determine the NLR size independent of stellar contamination. CLOUDY photoionization models show that the observed transition represents a true difference in ionization source and cannot be explained by variations of physical parameters. The electron density and ionization parameter decrease with radius indicating that the NLR is photoionized by the central source only. The velocity field suggests a disky NLR gas distribution.
200 - Enrico Congiu 2017
We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modelling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as a) the contribution of shocks in ionizing the high velocity gas, b) the complex kinematics showed by the profile of the emission lines, c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.
We present a high spatial and spectral resolution 2-D echelle spectrogram of the Narrow-Line Region in the Seyfert 2 galaxy NGC1386. This Seyfert galaxy was observed with CASPEC in the wavelength range 5270-7725 Angstrom which covers the H-alpha and the [N II] lines. With the use of spatially high resolved images taken with the WFPC2 aboard the Hubble Space Telescope we could identify individual components of the Narrow-Line Region in our spectra. A Gaussian decomposition of the spectra revealed 9 distinct emission-line complexes. The brightest component is blue-shifted by -120+-10 km/s with respect to the systemic velocity and shows an offset of -1.6 relative to the nucleus of the galaxy. The true nucleus of NGC1386 has a much lower apparent H-alpha luminosity than this component. The nucleus is probably highly absorbed. Although the majority of the Narrow-Line Region components follows a regular velocity field, we find evidence for a separate kinematic component. The Narrow-Line Region is aligned anti-parallel to the radio-jet which propagates from the center of NGC1386 to the south.
We present measurements of radial velocities for the narrow-line region gas (NLR) in the Seyfert 2 galaxy Mrk 3 out to ~1 kpc from the nucleus. The observations consist of two datasets, both using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope: 1) An [O III] slitless spectrum with the G430M grating of the inner 3 around the nucleus, and 2) a long-slit observation centered on the nucleus (PA = 71 deg) using the G430L grating and the 52 x 0.1 aperture. Our results produce radial velocity maps of the emission-line gas. These maps indicate general trends in the gas motion, which include: blueshifts and redshifts on either side of the nucleus, steep velocity rises from systemic up to ~ +/-700 km/s taking place in the inner 0.3 (0.8 kpc) both east and west of the nucleus, gradual velocity descents back to near-systemic values from 0.3-1.0, slightly uneven velocity amplitudes on each side of the nucleus, and narrow velocity ranges over the entire observed region. When fitted to kinematic modeling programs for the NLR gas, the data clearly favor a model where the gas exists in a partially filled bicone, is accelerated radially away from the nucleus, and is followed by a constant deceleration. This geometry and general kinematic model is in agreement with previous work done on the NLR gas of NGC 1068 and NGC 4151. On scales of hundreds of parsecs, we conclude that radial outflow may be a common feature of Seyfert galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا