Do you want to publish a course? Click here

QSO lensing magnification associated with galaxy groups

203   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We simulated both the matter and light (galaxy) distributions in a wedge of the universe and calculated the gravitational lensing magnification caused by the mass along the line of sight of galaxies and galaxy groups identified in sky surveys. A large volume redshift cone containing cold dark matter particles mimics the expected cosmological matter distribution in a flat universe with low matter density and a cosmological constant. We generate a mock galaxy catalogue from the matter distribution and identify thousands of galaxy groups in the luminous sky projection. We calculate the expected magnification around galaxies and galaxy groups and then the induced QSO-lens angular correlation due to magnification bias. This correlation is an observable and can be used to estimate the average mass of the lens population and also make cosmological inferences. We also use analytic calculations and various analysis to compare the observational results with theoretical expectations for the cross-correlation between faint QSOs from the 2dF Survey and nearby galaxies and groups from the APM and SDSS EDR. The observed QSO-lens anti-correlations are stronger than the predictions for the cosmological model used. This suggests that there could be unknown systematic errors in the observations and data reduction, or that the model used is not adequate. If the observed signal is assumed to be solely due to gravitational lensing then the lensing is stronger than expected, due to more massive galactic structures or more efficient lensing than simulated.



rate research

Read More

Magnification changes the observed number counts of galaxies on the sky. This biases the observed tangential shear profiles around galaxies, the so-called galaxy-galaxy lensing (GGL) signal, and the related excess mass profile. Correspondingly, inference of physical quantities, such as the mean mass profile of halos around galaxies, are affected by magnification effects. We use simulated shear and galaxy data of the Millennium Simulation to quantify the effect on shear and mass estimates from magnified lens and source number counts. The former are due to the large-scale matter distribution in the foreground of the lenses, the latter are caused by magnification of the source population by the matter associated with the lenses. The GGL signal is calculated from the simulations by an efficient fast-Fourier transform that can also be applied to real data. The numerical treatment is complemented by a leading-order analytical description of the magnification effects, which is shown to fit the numerical shear data well. We find the magnification effect is strongest for steep galaxy luminosity functions and high redshifts. For a lens redshift of $z_mathrm{d}=0.83$, a limiting magnitude of $22,mathrm{mag}$ in the $r$-band and a source redshift of $z_mathrm{s}=0.99$, we find that a magnification correction changes the shear profile up to $45%$ and the mass is biased by up to $55 %$. For medium-redshift galaxies the relative change in shear and mass is typically a few percent. As expected, the sign of the bias depends on the local slope of the lens luminosity function $alpha_mathrm{d}$, where the mass is biased low for $alpha_mathrm{d}<1$ and biased high for $alpha_mathrm{d}>1$. Whereas the magnification effect of sources is rarely than more $1%$, the statistical power of future weak lensing surveys warrants correction for this effect.
68 - A. D. Myers 2002
We cross-correlate QSOs from the 2dF Survey with galaxy groups. The galaxy samples are limited to B < 20.5. We use an objective algorithm to detect galaxy groups. A 3sigma anti-correlation is observed between QSOs and galaxy groups. This paucity of faint QSOs around groups is neither a selection effect nor due to restrictions on the placement of 2dF fibres. By observing the colours of QSOs on the scales of the anti-correlation, we limit dust in galaxy groups, finding a maximum reddening of E(b_j-r) < 0.012 at the 95% level. The small amount of dust thus inferred is insufficient to cause the anti-correlation, supporting the suggestion by Croom & Shanks that the signal is due to gravitational lensing. The possibility remains that tailored dust models, such as grey dust, heavy patches of dust or a combination of dust and lensing, could explain the anti-correlation. Assuming the signal is caused by lensing rather than dust, we measure the average velocity dispersion of a Singular Isothermal Sphere that would cause the anti-correlation as around 1150 km/s. Simulations reject 600 km/s at the 5% significance level. We also model foreground lenses as NFW haloes and measure the typical mass within 1.5 Mpc/h of the halo centre as M_{1.5} = (1.2 +/- 0.9) x 10^{15} solarmasses/h. Regardless of whether we utilise a SIS or NFW dark matter profile, our model favours more mass in groups than accounted for in a universe with density parameter Omega_m = 0.3. Detailed simulations and galaxy group redshifts will significantly reduce the current systematic uncertainties in these $Omega_m$ estimates. Reducing the remaining uncertainty will require larger QSO and galaxy group surveys (abridged).
126 - Ran Li , H.J. Mo , Zuhui Fan 2009
We use galaxy groups selected from the Sloan Digital Sky Survey (SDSS) together with mass models for individual groups to study the galaxy-galaxy lensing signals expected from galaxies of different luminosities and morphological types. We compare our model predictions with the observational results obtained from the SDSS by Mandelbaum et al. (2006) for the same samples of galaxies. The observational results are well reproduced in a $Lambda$CDM model based on the WMAP 3-year data, but a $Lambda$CDM model with higher $sigma_8$, such as the one based on the WMAP 1-year data,significantly over-predicts the galaxy-galaxy lensing signal. We model, separately, the contributions to the galaxy-galaxy lensing signals from different galaxies: central versus satellite, early-type versus late-type, and galaxies in halos of different masses. We also examine how the predicted galaxy-galaxy lensing signal depends on the shape, density profile, and the location of the central galaxy with respect to its host halo.
We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19<z<0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ~25 in the radial range of 200 to 3500kpc/h. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of $c_{200c}=4.01^{+0.35}_{-0.32}$ at $M_{200c}=1.34^{+0.10}_{-0.09} 10^{15}M_{odot}$. We show this is in excellent agreement with Lambda cold-dark-matter (LCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is $alpha_E=0.191^{+0.071}_{-0.068}$, which is consistent with the NFW-equivalent Einasto parameter of $sim 0.18$. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data, and measure cluster masses at several characteristic radii. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the LCDM model.
104 - Zeyang Sun 2021
We measure the cross-correlation between galaxy groups constructed from DESI Legacy Imaging Survey DR8 and Planck CMB lensing, over overlapping sky area of 16876 $rm deg^2$. The detections are significant and consistent with the expected signal of the large scale structure of the universe, over group samples of various redshift, mass and richness $N_{rm g}$ and over various scale cuts. The overall S/N is 39 for a conservative sample with $N_{rm g}geq 5$, and increases to $48$ for the sample with $N_{rm g}geq 2$. Adopting the Planck 2018 cosmology, we constrain the density bias of groups with $N_{rm g}geq 5$ as $b_{rm g}=1.31pm 0.10$, $2.22pm 0.10$, $3.52pm 0.20$ at $0.1<zleq 0.33$, $0.33<zleq 0.67$, $0.67<zleq1$ respectively. The value-added group catalog allows us to detect the dependence of bias on group mass with high significance. It also allows us to compare the measured bias with the theoretically predicted one using the estimated group mass. We find excellent agreement for the two high redshift bins. However, it is lower than the theory by $sim 3sigma$ for the lowest redshift bin. Another interesting finding is the significant impact of the thermal Sunyaev Zeldovich (tSZ). It contaminates the galaxy group-CMB lensing cross-correlation at $sim 30%$ level, and must be deprojected first in CMB lensing reconstruction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا