Do you want to publish a course? Click here

Galaxy Evolution and Cosmology with the Square Kilometre Array

92   0   0.0 ( 0 )
 Added by Steve Rawlings
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The present-day Universe is seemingly dominated by dark energy and dark matter, but mapping the normal (baryonic) content remains vital for both astrophysics - understanding how galaxies form - and astro-particle physics - inferring properties of the dark components. The Square Kilometre Array (SKA) will provide the only means of studying the cosmic evolution of neutral Hydrogen (HI) which, alongside information on star formation from the radio continuum, is needed to understand how stars formed from gas within dark-matter over-densities and the roles of gas accretion and galaxy merging. `All hemisphere HI redshift surveys to redshift 1.5 are feasible with wide-field-of-view realizations of the SKA and, by measuring the galaxy power spectrum in exquisite detail, will allow the first precise studies of the equation-of-state of dark energy. The SKA will be capable of other uniquely powerful cosmological studies including the measurement of the dark-matter power spectrum using weak gravitational lensing, and the precise measurement of H0 using extragalactic water masers. The SKA is likely to become the premier dark-energy-measuring machine, bringing breakthroughs in cosmology beyond those likely to be made possible by combining CMB (e.g. Planck), optical (e.g. LSST, SNAP) and other early-21st-century datasets.



rate research

Read More

142 - Steve Rawlings 2011
We review how the Square Kilometre Array (SKA) will address fundamental questions in cosmology, focussing on its use for neutral Hydrogen (HI) surveys. A key enabler of its unique capabilities will be large (but smart) receptors in the form of aperture arrays. We outline the likely contributions of Phase-1 of the SKA (SKA1), Phase-2 SKA (SKA2) and pathfinding activities (SKA0). We emphasise the important role of cross-correlation between SKA HI results and those at other wavebands such as: surveys for objects in the EoR with VISTA and the SKA itself; and huge optical and near-infrared redshift surveys, such as those with HETDEX and Euclid. We note that the SKA will contribute in other ways to cosmology, e.g. through gravitational lensing and $H_{0}$ studies.
We review the current status of the Square Kilometre Array (SKA) by outlining the science drivers for its Phase-1 (SKA1) and setting out the timeline for the key decisions and milestones on the way to the planned start of its construction in 2016. We explain how Phase-2 SKA (SKA2) will transform the research scope of the SKA infrastructure, placing it amongst the great astronomical observatories and survey instruments of the future, and opening up new areas of discovery, many beyond the confines of conventional astronomy.
Theoretical uncertainties on non-linear scales are among the main obstacles to exploit the sensitivity of forthcoming galaxy and hydrogen surveys like Euclid or the Square Kilometre Array (SKA). Here, we devise a new method to model the theoretical error that goes beyond the usual cut-off on small scales. The advantage of this more efficient implementation of the non-linear uncertainties is tested through a Markov-Chain-Monte-Carlo (MCMC) forecast of the sensitivity of Euclid and SKA to the parameters of the standard $Lambda$CDM model, including massive neutrinos with total mass $M_ u$, and to 3 extended scenarios, including 1) additional relativistic degrees of freedom ($Lambda$CDM + $M_ u$ + $N_mathrm{eff}$), 2) a deviation from the cosmological constant ($Lambda$CDM + $M_ u$ + $w_0$), and 3) a time-varying dark energy equation of state parameter ($Lambda$CDM + $M_ u$ + $left(w_0,w_a right)$). We compare the sensitivity of 14 different combinations of cosmological probes and experimental configurations. For Euclid combined with Planck, assuming a plain cosmological constant, our method gives robust predictions for a high sensitivity to the primordial spectral index $n_{rm s}$ ($sigma(n_s)=0.00085$), the Hubble constant $H_0$ ($sigma(H_0)=0.141 , {rm km/s/Mpc}$), the total neutrino mass $M_ u$ ($sigma(M_ u)=0.020 , {rm eV}$). Assuming dynamical dark energy we get $sigma(M_ u)=0.030 , {rm eV}$ for the mass and $(sigma(w_0), sigma(w_a)) = (0.0214, 0.071)$ for the equation of state parameters. The predicted sensitivity to $M_ u$ is mostly stable against the extensions of the cosmological model considered here. Interestingly, a significant improvement of the constraints on the extended model parameters is also obtained when combining Euclid with a low redshift HI intensity mapping survey by SKA1, demonstrating the importance of the synergy of Euclid and SKA.
The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and Dark Matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in the light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era.
The Square Kilometre Array (SKA) will be a formidable instrument for the detailed study of neutral hydrogen (HI) in external galaxies and in our own Galaxy and Local Group. The sensitivity of the SKA, its wide receiver bands, and the relative freedom from radio frequency interference at the SKA sites will allow the imaging of substantial number of high-redshift galaxies in HI for the first time. It will also allow imaging of galaxies throughout the Local Volume at resolutions of <100 pc and detailed investigations of galaxy disks and the transition between disks, halos and the intergalactic medium (IGM) in the Milky Way and external galaxies. Together with deep optical and millimetre/sub-mm imaging, this will have a profound effect on our understanding of the formation, growth and subsequent evolution of galaxies in different environments. This paper provides an introductory text to a series of nine science papers describing the impact of the SKA in the field of HI and galaxy evolution. We propose a nested set of surveys with phase 1 of the SKA which will help tackle much of the exciting science described. Longer commensal surveys are discussed, including an ultra-deep survey which should permit the detection of galaxies at z=2, when the Universe was a quarter of its current age. The full SKA will allow more detailed imaging of even more distant galaxies, and allow cosmological and evolutionary parameters to be measured with exquisite precision.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا