Do you want to publish a course? Click here

Subaru Deep Spectroscopy of a Star-forming Companion Galaxy of BR 1202-0725 at $z=4.7$

120   0   0.0 ( 0 )
 Added by Youichi Ohyama
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present deep spatially-resolved optical spectroscopy of the NW companion galaxy of the quasar BR 1202-0725 at $z=4.7$. Its rest-frame UV spectrum shows star-forming activity in the nuclear region. The Ly$alpha$ emission profile is symmetric with wavelength while its line width is unusually wide (FWHM $simeq 1100$ km s$^{-1}$) for such a high-$z$ star-forming galaxy. Spectrum taken along the Ly$alpha$ nebula elongation, which is almost along the minor axis of the companion host galaxy, reveals that off-nuclear Ly$alpha$ nebulae have either flat-topped or multi-peaked profiles along the extension. All these properties can be understood in terms of superwind activity in the companion galaxy. We also find a diffuse continuum component around the companion, which shows similar morphology to that of Ly$alpha$ nebula, and is most likely due to scattering of the quasar light at dusty halo around the companion. We argue that the superwind could expel dusty material out to the halo region, making a dusty halo for scattering.



rate research

Read More

182 - P. Salome , M. Guelin , D. Downes 2012
The radio-quiet quasar BR1202-0725 (z=4.695) is a remarkable source with a bright Northwest (NW) companion detected at submm and radio wavelengths but invisible in the optical. In the absence of amplification by gravitational lensing, BR1202-0725 would be the most luminous binary CO and FIR source in the Universe. In this paper, we report observations with the IRAM Plateau de Bure interferometer of BR1202-0725 in the redshifted emission of the CO(5-4) and (7-6) lines, the [C I](3P2-3P1) line, a high angular resolution (0.3 x 0.8 arcsec) 1.3 mm map of the rest-frame, far-IR dust continuum, and a search for the CO(11-10) line. We compare these results with recent ALMA data in the [C II] line. Both the quasar host galaxy and its NW companion are spatially resolved in the molecular line emission and the dust continuum. The CO profile of the NW companion is very broad with a full width at half maximum of 1000 +/- 130 km/s, compared to 360 +/- 40 km/s for the quasar host galaxy to the Southeast (SE). The difference in linewidths and center velocities, and the absence of any lens candidate or arc-like structure in the field, at any wavelength, show that the obscured NW galaxy and the SE quasar host galaxy cannot be lensed images of the same object. Instead, we find morphological and kinematic evidence for sub-structures in both the NW and SE sources. We interpret these results as strong indications that the BR1202-0725 complex is a group of young, interacting, and highly active starburst galaxies.
355 - Chun Ly (1 , 2 , 2011
Several UV and near-infrared color selection methods have identified galaxies at z = 1-3. Since each method suffers from selection biases, we have applied three leading techniques (Lyman break, BX/BM, and BzK selection) simultaneously in the Subaru Deep Field. This field has reliable ({Delta}z/(1 + z) = 0.02--0.09) photometric redshifts for ~53,000 galaxies from 20 bands (1500{AA}--2.2{mu}m). The BzK, LBG, and BX/BM samples suffer contamination from z<1 interlopers of 6%, 8%, and 20%, respectively. Around the redshifts where it is most sensitive (z~1.9 for star-forming BzK, z~1.8 for z~2 LBGs, z~1.6 for BM, and z~2.3 for BX), each technique finds 60-80% of the census of the three methods. In addition, each of the color techniques shares 75-96% of its galaxies with another method, which is consistent with previous studies that adopt identical criteria on magnitudes and colors. Combining the three samples gives a comprehensive census that includes ~90% of z-phot = 1-3 galaxies, using standard magnitude limits similar to previous studies. In fact, we find that among z = 1-2.5 galaxies in the color selection census, 81-90% of them can be selected by just combining the BzK selection with one of the UV techniques (z~2 LBG or BX and BM). The average galaxy stellar mass, reddening and SFRs all decrease systematically from the sBzK population to the LBGs, and to the BX/BMs. The combined color selections yield a total cosmic SFR density of 0.18 $pm$ 0.03 M_sun yr^{-1} Mpc^{-3} for K_AB <= 24. We find that 65% of the star formation is in galaxies with E(B-V) > 0.25 mag, even though they are only one-fourth of the census by number.
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [CII] 157.7micron fine structure line and thermal dust continuum emission from a pair of gas-rich galaxies at z=4.7, BR1202-0725. This system consists of a luminous quasar host galaxy and a bright submm galaxy (SMG), while a fainter star-forming galaxy is also spatially coincident within a 4 (25 kpc) region. All three galaxies are detected in the submm continuum, indicating FIR luminosities in excess of 10^13 Lsun for the two most luminous objects. The SMG and the quasar host galaxy are both detected in [CII] line emission with luminosities, L([CII]) = (10.0 +/- 1.5)x10^9 Lsun and L([CII]) = (6.5+/-1.0)x10^9 Lsun, respectively. We estimate a luminosity ratio, L([CII])/L(FIR) = (8.3+/-1.2)x10^-4 for the starburst SMG to the North, and L([CII])/L(FIR) = (2.5+/-0.4)x10^-4 for the quasar host galaxy, in agreement with previous high-redshift studies that suggest lower [CII]-to-FIR luminosity ratios in quasars than in starburst galaxies. The third fainter object with a flux density, S(340GHz) = 1.9+/-0.3 mJy, is coincident with a Ly-Alpha emitter and is detected in HST ACS F775W and F814W images but has no clear counterpart in the H-band. Even if this third companion does not lie at a similar redshift to BR1202-0725, the quasar and the SMG represent an overdensity of massive, infrared luminous star-forming galaxies within 1.3 Gyr of the Big Bang.
119 - D. Iono 2006
We present ~3 resolution imaging of the z=4.7 QSO BR1202-0725 at 900 micron from the Submillimeter Array. The two submillimeter continuum components are clearly resolved from each other, and the positions are consistent with previous lower frequency images. In addition, we detect [CII] line emission from the northern component. The ratio of [CII] to far-infrared luminosity is 0.04% for the northern component, and an upper limit of < 0.03% is obtained for the southern component. These ratios are similar to the low values found in local ultraluminous galaxies, indicating that the excitation conditions are different from those found in local field galaxies. X-ray emission is detected by Chandra from the southern component at L$_{0.5-2keV}=3times10^{45}$~erg~s$^{-1}$, and detected at 99.6% confidence from the northern component at L$_{0.5-2keV}sim3times10^{44}$erg~s$^{-1}$, supporting the idea that BR1202-0725 is a pair of interacting galaxies at z=4.7 that each harbor an active nucleus.
We present near-infrared spectroscopic observations of star-forming galaxies at z~1.4 with FMOS on the Subaru Telescope. We observed K-band selected galaxies in the SXDS/UDS fields with K<23.9 mag, 1.2<z_ph<1.6, M*>10^{9.5} Msun, and expected F(Halpha)>10^{-16} erg s^{-1} cm^{-2}. 71 objects in the sample have significant detections of Halpha. For these objects, excluding possible AGNs identified from the BPT diagram, gas-phase metallicities are obtained from [NII]/Halpha line ratio. The sample is split into three stellar mass bins, and the spectra are stacked in each stellar mass bin. The mass-metallicity relation obtained at z~1.4 is located between those at z~0.8 and z~2.2. We constrain an intrinsic scatter to be ~0.1 dex or larger in the mass-metallicity relation at z~1.4; the scatter may be larger at higher redshifts. We found trends that the deviation from the mass-metallicity relation depends on the SFR and the half light radius: Galaxies with higher SFR and larger half light radii show lower metallicities at a given stellar mass. One possible scenario for the trends is the infall of pristine gas accreted from IGM or through merger events. Our data points show larger scatter than the fundamental metallicity relation (FMR) at z~0.1 and the average metallicities slightly deviate from the FMR. The compilation of the mass-metallicity relations at z~3 to z~0.1 shows that they evolve smoothly from z~3 to z~0 without changing the shape so much except for the massive part at z~0.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا