We have scanned the fields of six radio-loud quasars using the Taurus Tunable Filter to detect redshifted [OII] 3727 line-emitting galaxies at redshifts 0.8 < z < 1.3. Forty-seven new emission-line galaxy (ELG) candidates are found. This number corresponds to an average space density about 100 times that found locally and, at L([OII]) < 10^{42} erg s^{-1} cm^{-2}, is 2 - 5 times greater than the field ELG density at similar redshifts, implying that radio-loud quasars inhabit sites of above-average star formation activity. The implied star-formation rates are consistent with surveys of field galaxies at z ~ 1. However, the variation in candidate density between fields is large and indicative of a range of environments, from the field to rich clusters. The ELG candidates also cluster -- both spatially and in terms of velocity -- about the radio sources. In fields known to contain rich galaxy clusters, the ELGs lie at the edges and outside the concentrated cores of red, evolved galaxies, consistent with the morphology-density relation seen in low-redshift clusters. This work, combined with other studies, suggests that the ELG environments of powerful AGN look very much the same from moderate to high redshifts, i.e. 0.8 < z < 4.