No Arabic abstract
The good agreement between large-scale observations and the predictions of the now-standard $Lambda$CDM theory gives us hope that this will become a lasting foundation for cosmology. After briefly reviewing the current status of the key cosmological parameters, I summarize several of the main areas of possible disagreement between theory and observation: big bang nucleosynthesis, galaxy centers, dark matter substructure, and angular momentum, updating my earlier reviews [1]. The issues in all of these are sufficiently complicated that it is not yet clear how serious they are, but there is at least some reason to think that the problems will be resolved through a deeper understanding of the complicated astrophysics involved in such processes as gas cooling, star formation, and feedback from supernovae and AGN. Meanwhile, searches for dark matter are dramatically improving in sensitivity, and gamma rays from dark matter annihilation at the galactic center may have been detected by H.E.S.S.
This is the dawning of the age of precision cosmology, when all the important parameters will be established to one significant figure or better, within the cosmological model. In the age of accurate cosmology the model, which nowadays includes general relativity theory and the CDM model for structure formation, will be checked tightly enough to be established as a convincing approximation to reality. I comment on how we might make the transition. We already have some serious tests of gravity physics on the length and time scales of cosmology. The evidence for consistency with general relativity theory is still rough, but impressive, considering the enormous extrapolation from the empirical basis, and these probes of gravity physics will be considerably improved by work in progress on the cosmological tests. The CDM model has some impressive observational successes too, and some challenges, not least of which is that the model is based on a wonderfully optimistic view of the simplicity of physics in the dark sector. I present as a cautionary example a model for dark matter and dark energy that biases interpretations of cosmological observations that assume the CDM model. In short, cosmology has become an empirically rich subject with a well-motivated standard model, but it needs work to be established as generally accurate.
I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos.
Weak gravitational lensing, the deflection of light by mass, is one of the best tools to constrain the growth of cosmic structure with time and reveal the nature of dark energy. I discuss the sources of systematic uncertainty in weak lensing measurements and their theoretical interpretation, including our current understanding and other options for future improvement. These include long-standing concerns such as the estimation of coherent shears from galaxy images or redshift distributions of galaxies selected based on photometric redshifts, along with systematic uncertainties that have received less attention to date because they are subdominant contributors to the error budget in current surveys. I also discuss methods for automated systematics detection using survey data of the 2020s. The goal of this review is to describe the current state of the field and what must be done so that if weak lensing measurements lead toward surprising conclusions about key questions such as the nature of dark energy, those conclusions will be credible.
After briefly reviewing the good agreement between large-scale observations and the predictions of the now-standard CDM theory and problems with the MOND alternative, I summarize several of the main areas of possible disagreement between theory and observation: galaxy centers, dark matter substructure, angular momentum, and the sequence of cosmogony, updating earlier reviews [1]. All of these issues are sufficiently complicated that it is not yet clear how serious they are, but there is at least some reason to think that the problems will be resolved through a deeper understanding of the complicated gastrophysics of star formation and feedback from supernovae and AGN.
We consider a recently proposed model in which dark matter interacts with a thermal background of dark radiation. Dark radiation consists of relativistic degrees of freedom which allow larger values of the expansion rate of the universe today to be consistent with CMB data ($H_0$-problem). Scattering between dark matter and radiation suppresses the matter power spectrum at small scales and can explain the apparent discrepancies between $Lambda$CDM predictions of the matter power spectrum and direct measurements of Large Scale Structure LSS ($sigma_8$-problem). We go beyond previous work in two ways: 1. we enlarge the parameter space of our previous model and allow for an arbitrary fraction of the dark matter to be interacting and 2. we update the data sets used in our fits, most importantly we include LSS data with full $k$-dependence to explore the sensitivity of current data to the shape of the matter power spectrum. We find that LSS data prefer models with overall suppressed matter clustering due to dark matter - dark radiation interactions over $Lambda$CDM at 3-4 $sigma$. However recent weak lensing measurements of the power spectrum are not yet precise enough to clearly distinguish two limits of the model with different predicted shapes for the linear matter power spectrum. In two Appendices we give a derivation of the coupled dark matter and dark radiation perturbation equations from the Boltzmann equation in order to clarify a confusion in the recent literature, and we derive analytic approximations to the solutions of the perturbation equations in the two physically interesting limits of all dark matter weakly interacting or a small fraction of dark matter strongly interacting.