No Arabic abstract
(Abridged abstract) We present an analysis of the X-ray emission of the rapidly rotating giant star YY Mensae observed by Chandra HETGS and XMM-Newton. Although no obvious flare was detected, the X-ray luminosity changed by a factor of two between the XMM-Newton and Chandra observations taken 4 months apart. The coronal abundances and the emission measure distribution have been derived from three different methods using optically thin collisional ionization equilibrium models. The abundances show an inverse first ionization potential (FIP) effect. We further find a high N abundance which we interpret as a signature of material processed in the CNO cycle. The corona is dominated by a very high temperature (20-40 MK) plasma, which places YY Men among the magnetically active stars with the hottest coronae. Lower temperature plasma also coexists, albeit with much lower emission measure. Line broadening is reported, which we interpret as Doppler thermal broadening, although rotational broadening due to X-ray emitting material high above the surface could be present as well. We use two different formalisms to discuss the shape of the emission measure distribution. The first one infers the properties of coronal loops, whereas the second formalism uses flares as a statistical ensemble. We find that most of the loops in the corona of YY Men have their maximum temperature equal to or slightly larger than about 30 MK. We also find that small flares could contribute significantly to the coronal heating in YY Men. Although there is no evidence of flare variability in the X-ray light curves, we argue that YY Mens distance and X-ray brightness does not allow us to detect flares with peak luminosities Lx <= 10^{31} erg/s with current detectors.
We present an analysis of the diffuse X-ray emission in 19 compact groups of galaxies (CGs) observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in $L_X-T$ and $L_X-sigma$, even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify HCGs 19, 22, 40, and 42 and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and HI masses $gtrsim10^{11.3}$ M$_odot$ are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 $mu$m star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due to gas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.
We present a multiwavelength study of GRB 151027A. This is the 999th GRB detected by the Swift satellite and it has a densely sampled emission in the X-ray and optical band and has been observed and detected in the radio up to 140 days after the prompt. The multiwavelength light curve from 500 s to 140 days can be modelled through a standard forward shock afterglow but requires an additional component to reproduce the early X-ray and optical emission. We present TNG and LBT optical observations performed 19.6, 33.9 and 92.3 days after the trigger which show a bump with respect to a standard afterglow flux decay and are possibly interpreted as due to the underlying SN and host galaxy (of 0.4 uJy in the R band). Radio observations, performed with SRT, Medicina, EVN and VLBA between day 4 and 140, suggest that the burst exploded in an environment characterised by a density profile scaling with the distance from the source (wind profile). A remarkable feature of the prompt emission is the presence of a bright flare 100 s after the trigger, lasting 70 seconds in the soft X-ray band, which was simultaneously detected from the optical band up to the MeV energy range. By combining Swift-BAT/XRT and Fermi-GBM data, the broadband (0.3-1000 keV) time resolved spectral analysis of the flare reveals the coexistence of a non-thermal (power law) and thermal blackbody components. The BB component contributes up to 35% of the luminosity in the 0.3-1000 keV band. The gamma-ray emission observed in Swift-BAT and Fermi-GBM anticipates and lasts less than the soft X-ray emission as observed by Swift-XRT, arguing against a Comptonization origin. The BB component could either be produced by an outflow becoming transparent or by the collision of a fast shell with a slow, heavy and optically thick fireball ejected during the quiescent time interval between the initial and later flares of the burst.
Multiple stellar populations in globular clusters (GCs) are defined and recognized by their chemical signature, with second generation stars showing the effects of nucleosynthesis in the more massive stars of the earliest component formed in the first star formation burst. High temperature H-burning produces the whole pattern of (anti)-correlations among proton-capture elements widely found in GCs. However, where this burning occurred is still debated. Here we introduce new powerful diagnostic plots to detect evidence (if any) of products from proton-capture reactions occurring at very high temperatures. To test these Detectors Of High Temperature (in short DOHT) H-burning plots we show how to put stringent constraints on the temperature range of the first generation polluters that contributed to shape the chemistry of multiple stellar population in the massive bulge GC NGC 6388. Using the largest sample to date (185 stars) of giants with detailed abundance ratios in a single GC (except omega Cen) we may infer that the central temperature of part of the polluters must have been comprised between about 100 and about 150 million Kelvin (MK) if we consider hydrostatic H-burning in the core of massive stars. A much narrower range (110 to 120 MK) is inferred if the polluters can be identified in massive asymptotic giant branch (AGB) stars.
We study the emission from the hot interstellar medium in a sample of nearby late type galaxies defined in Paper I. Our sample covers a broad range of star formation rates, from ~0.1 Msun/yr to ~17 Msun/yr and stellar masses, from ~3x10^8 Msun to ~6x10^10 Msun. We take special care of systematic effects and contamination from bright and faint compact sources. We find that in all galaxies at least one optically thin thermal emission component is present in the unresolved emission, with the average temperature of <kT>= 0.24 keV. In about ~1/3 of galaxies, a second, higher temperature component is required, with the <kT>= 0.71 keV. Although statistically significant variations in temperature between galaxies are present, we did not find any meaningful trends with the stellar mass or star formation rate of the host galaxy. The apparent luminosity of the diffuse emission in the 0.5-2 keV band linearly correlates with the star formation rate with the scale factor of Lx/SFRapprox 8.3x10^38 erg/s per Msun/yr, of which in average ~30-40% is likely produced by faint compact sources of various types. We attempt to estimate the bolometric luminosity of the gas and and obtained results differing by an order of magnitude, log(Lbol/SFR)sim39-40, depending on whether intrinsic absorption in star-forming galaxies was allowed or not. Our theoretically most accurate, but in practice the most model dependent result for the intrinsic bolometric luminosity of ISM is Lbol/SFRsim 1.5x10^40 erg/s per Msun/yr. Assuming that core collapse supernovae are the main source of energy, it implies that epsilon_SNsim5x10^-2 (E_SN/10^51)^-1 of mechanical energy of supernovae is converted into thermal energy of ISM.
(abridged) [...] Methods: In a continued study of the molecular core population of the Pipe Nebula, we present a molecular-line survey of 52 cores. Previous research has shown a variety of different chemical evolutionary stages among the cores. Using the Mopra radio telescope, we observed the ground rotational transitions of HCO+, H13CO+, HCN, H13CN, HNC, and N2H+. These data are complemented with near-infrared extinction maps to constrain the column densities, effective dust temperatures derived from Herschel data, and NH3-based gas kinetic temperatures. Results: The target cores are located across the nebula, span visual extinctions between 5 and 67 mag, and effective dust temperatures (averaged along the lines of sight) between 13 and 19 K. The extinction-normalized integrated line intensities, a proxy for the abundance in constant excitation conditions of optically thin lines, vary within an order of magnitude for a given molecule. The effective dust temperatures and gas kinetic temperatures are correlated, but the effective dust temperatures are consistently higher than the gas kinetic temperatures. Combining the molecular line and temperature data, we find that N2H+ is only detected toward the coldest and densest cores while other lines show no correlation with these core properties. Conclusions: Within this large sample, N2H+ is the only species to exclusively trace the coldest and densest cores, in agreement with chemical considerations. In contrast, the common high-density tracers HCN and HNC are present in a majority of cores, demonstrating the utility of these molecules to characterize cores over a large range of extinctions. The correlation between the effective dust temperatures and the gas kinetic temperatures suggests that the former are dominated by dust that is both dense and thermodynamically coupled to the dense gas traced by NH3. [...]