We present results from two statistical analyses applied to an neutral hydrogen (HI) dataset of the nearby tidal bridge in the Magellanic System. Primarily, analyses of the Spatial Power Spectrum suggest that the Magellanic Bridge, historically considered to be a single contiguous feature, may in fact be a projection of two kinematically and morphologically distinct structures. The southern and more obviously turbulent parts appear to show structure organized similarly to the adjacent Small Magellanic Cloud (SMC), while the northern regions are shown to be relatively deficient in large scale power. The extent of modification to the spatial power index by the velocity fluctuations is also highly variant across these parts of the Bridge. We find again that the northern part appears distinct from the southern part and from the SMC, in that the power spectrum is significantly more affected by slower velocity perturbations. We also probe the rate of spectral variation of the HI by measuring the Spectral Correlation Function over selected regions. The results from this analysis highlight a tendency for the HI spectra within the bright parts of the Bridge to have a more persistent correlation in the E-W direction than in the N-S direction. These results are considered to be quantitative evidence for the tidal processes which are thought to have been active throughout the evolution of the Magellanic Bridge