Do you want to publish a course? Click here

Spectroscopic Identification of Faint White Dwarf Candidates in the Praesepe Open Star Cluster

193   0   0.0 ( 0 )
 Added by Kurtis A. Williams
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present spectroscopic observations of the remaining four candidate white dwarfs in Praesepe. All four candidates are quasars with redshifts between 0.8 and 2.8. One quasar, LB 6072, is observed to have a strong metal-line absorption system blueward of the quasar redshift. The lack of additional white dwarfs in Praesepe leaves the total known white-dwarf population of the cluster at five, well below the number expected from commonly-assumed initial mass functions, though several undiscovered cluster WDs may lie in the outer regions of the cluster. All known Praesepe member white dwarfs are concentrated within 0.6 deg of the cluster center, and the radial profile of cluster white dwarfs is quite similar to the profile of massive cluster stars. This profile is mildly inconsistent with that of ~1Mo cluster stars and suggests that the white dwarfs did not receive a velocity kick during the progenitor stars mass loss phases. If complete, the observed Praesepe white dwarf population is consistent with a steeper high-end initial-mass function than commonly assumed, though the calculated slopes are inconsistent with the present-day mass function of Praesepe. Searches for white dwarfs outside the core of Praesepe and further study of the white dwarf populations of additional open clusters is necessary to constrain further the underlying cause of the white dwarf deficit.



rate research

Read More

We report the discovery of a hot DQ white dwarf, NGC 2168:LAWDS 28, that is a likely member of the 150-Myr old cluster NGC 2168 (Messier 35). The spectrum of the white dwarf is dominated by CII features. The effective temperature is difficult to estimate but likely > 20,000 K based on the temperatures of hot DQs with similar spectra. NGC2168:LAWDS 28 provides further evidence that hot DQs may be the ``missing high-mass helium-atmosphere white dwarfs. Based on published studies, we find that the DBA WD LP 475-242 is likely a member of the Hyades open cluster, as often assumed. These two white dwarfs are the entire sample of known He-atmosphere white dwarfs in open clusters with turnoff masses >2 solar masses. Based on the number of known cluster DA white dwarfs and a redetermination of the H-atmosphere:He-atmosphere ratio, commonly known as the DA:DB ratio, we re-examine the hypothesis that the H- to He-atmosphere ratio in open clusters is the same as the ratio in the field. Under this hypothesis, we calculate that five He-atmosphere WDs are expected to have been discovered, with a probability of finding fewer than three He-atmosphere white dwarfs of 0.08, or at the ~ 2-sigma level.
We analysed the wide-field near-infrared survey of the Praesepe cluster carried out by the UKIRT Infrared Deep Sky Survey (UKIDSS) Galactic Clusters Survey (GCS) and released by the Data Release 9 (DR9). We compare our Praesepe mass function (MF) with the ones of the Pleiades, alpha Per, and the Hyades. We also present preliminary results of a spectroscopic follow-up for the low mass members (M=<0.1Msol) in Praesepe, alpha Per and Pleiades using the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) mounted on the 10.4m Gran Telescopio Canarias (GTC). We also present the optical spectrum of the first L dwarf in Praesepe.
We present deep CCD photometry of the very rich, intermediate aged (similar to the Hyades) open star cluster NGC 2099 (M37). The V, B-V color-magnitude diagram (CMD) for the cluster shows an extremely well populated and very tightly constrained main-sequence extending over 12 magnitudes from the turn-off. The CFH12K photometry for this cluster is faint enough (V ~ 24.5) to detect the remnants of the most massive progenitor cluster stars under the Type I SNe limit. Therefore, the CMD of the cluster also exhibits a well defined white dwarf `clump caused by the decreased rate of cooling of these stars as they age, and a subsequent gap with very few objects. The termination point (Mv = 11.95 +/- 0.30) of the white dwarf luminosity function gives a white dwarf cooling age of 566 +/- 154/176 Myrs which is in excellent agreement with the main-sequence turn-off isochrone age (520 Myrs). By carefully accounting for errors, we show that the cooling age confirms that models including convective core overshooting are preferred for young-intermediate aged clusters. We also derive the reddening (E(B-V) = 0.21 +/- 0.03) and distance ((m-M)v = 11.55 +/- 0.13) to NGC 2099 by matching main-sequence features in the cluster to a new fiducial main-sequence for the Hyades. As a continuing part of the goals of the CFHT Open Star Cluster Survey to better understand dynamical processes of open clusters, we also fit a King model to the cluster density distribution and investigate the cluster main-sequence luminosity and mass functions in increasing concentric annuli. We find some evidence for mass segregation within the boundary of NGC 2099 as expected given the clusters age relative to the dynamical age. The present global mass function for the cluster is found to be shallower than a Salpeter IMF.
We present low-resolution (R=900) optical (576.1--1,051.1 nm) spectroscopic observations of 40 candidate very low-mass members in the Upper Scorpius OB association. These objects were selected using the $I$, $J$ and $K$ photometry available in the DENIS database. We have derived spectral types and we have measured H$alpha$ and NaI doublet (at 818.3 and 819.5 nm) equivalent widths. We assess the youth of the objects by comparing them to their older counterparts of similar spectral type in the Pleiades cluster and the field. Our analysis indicates that 28 of our targets are young very low-mass objects, and thus they are strong candidate members of the OB association. The other 12 DENIS sources are foreground M dwarfs or background red giants. Our sample of spectroscopic candidate members includes 18 objects with spectral types in the range M6.5 and M9, which are likely young brown dwarfs. We classify these candidates as accreting/non accreting using the scheme proposed by Barrado y Navascues & Marti n (2003). We find 5 substellar-mass candidate cluster members that are still undergoing mass accretion, indicating that the timescale for accretion onto brown dwarfs can be as long as 5 Myr in some cases.
We report the identification, from a photometric, astrometric and spectroscopic study, of a massive white dwarf member of the nearby, approximately solar metalicity, Coma Berenices open star cluster (Melotte 111). We find the optical to near-IR energy distribution of WD1216+260 to be entirely consistent with that of an isolated DA and determine the effective temperature and surface gravity of this object to be $T_{rm eff}$=$15739^{+197}_{-196}$K and log $g$=$8.46^{+0.03}_{-0.02}$. We set tight limits on the mass of a putative cool companion, M$simgreat$0.036M$_{odot}$ (spatially unresolved) and M$simgreat$0.034M$_{odot}$, (spatially resolved and a$simless$2500AU). Based on the predictions of CO core, thick-H layer evolutionary models we determine the mass and cooling time of WD1216+260 to be M$_{rm WD}$=$0.90 pm0.04$M$_{odot}$ and $tau$$_{rm cool}$=$363^{+46}_{-41}$Myrs respectively. For an adopted cluster age of $tau$=500$pm$100Myrs we infer the mass of its progenitor star to be M$_{rm init}$=$4.77^{+5.37}_{-0.97}$M$_{odot}$. We briefly discuss this result in the context of the form of the stellar initial mass-final mass relation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا