Do you want to publish a course? Click here

XMM-Newton observations of the relaxed, high-redshift galaxy cluster ClJ0046.3+8530 at z=0.62

107   0   0.0 ( 0 )
 Added by Ben Maughan
 Publication date 2004
  fields Physics
and research's language is English
 Authors B. J. Maughan




Ask ChatGPT about the research

A detailed analysis of XMM observations of ClJ0046.3+8530 (z=0.624) is presented. The cluster has a moderate temperature (kT=4.1+/-0.3keV) and appears to be relaxed. Emission is detected at >3 sigma significance to a radius of 88% of R200 (the radius enclosing an overdensity of 200 times the critical density at z=0.624) in a surface-brightness profile. A temperature profile (extending to 0.7R200), and hardness-ratio map show no significant departures from the global temperature, within the statistical limits of the data. The clusters bolometric X-ray luminosity is L=(4.3+/-0.3)*10^44 erg/s, and the total mass derived within R200, assuming isothermality and hydrostatic equilibrium, is M_200=3.0^{+0.6}_{-0.5}*10^14 Msolar. The gas entropy measured at 0.1R200 is compared with a sample of local systems, and found to be consistent with self-similar evolution with redshift. The metallicity, gas density profile slope, and gas mass fraction are all consistent with those found in low-z clusters.



rate research

Read More

95 - B. J. Maughan 2004
A detailed X-ray analysis of an XMM-Newton observation of the high-redshift (z=0.89) galaxy cluster ClJ1226.9+3332 is presented. The X-ray temperature is found to be 11.5{+1.1}{-0.9}keV, the highest X-ray temperature of any cluster at z>0.6. In contrast to MS1054-0321, the only other very hot cluster currently known at z>0.8, ClJ1226.9+3332 features a relaxed X-ray morphology, and its high overall gas temperature is not caused by one or several hot spots. The system thus constitutes a unique example of a high redshift, high temperature, relaxed cluster, for which the usual hydrostatic equilibrium assumption, and the X-ray mass is most reliable. A temperature profile is constructed (for the first time at this redshift) and is consistent with the cluster being isothermal out to 45% of the virial radius. Within the virial radius (corresponding to a measured overdensity of a factor of 200), a total mass of (1.4+/-0.5)*10^15 M_solar is derived, with a gas mass fraction of 12+/-5%. The bolometric X-ray luminosity is (5.3+/-0.2)*10^45 erg/s. The probabilities of finding a cluster of this mass within the volume of the discovery X-ray survey are 8*10^{-5} for Omega_M=1 and 0.64 for Omega_M=0.3, making Omega_M=1 highly unlikely. The entropy profile suggests that entropy evolution is being observed. The metal abundance (of Z=0.33{+0.14}{-0.10} Z_solar), gas mass fraction, and gas distribution are consistent with those of local clusters; thus the bulk of the metals were in place by z=0.89.
97 - E. Belsole 2004
We present the results of XMM-Newton observations of three high-redshift powerful radio galaxies 3C 184, 3C 292 and 3C 322. Although none of the sources lies in as rich an X-ray-emitting environment as is seen for some powerful radio galaxies at low redshift, the environments provide sufficient pressure to confine the radio lobes. The weak gas emission is particularly interesting for 3C 184, where a gravitational arc is seen, suggesting the presence of a massive cluster. Here Chandra data complement the XMM-Newton measurements by spatially separating X-rays from the extended atmosphere, the nucleus and the small-scale radio source. For 3C 292 the X-ray-emitting gas has a temperature of ~2 keV and luminosity of 6.5E43 erg/s, characteristic of a poor cluster. In all three cases, structures where the magnetic-field strength can be estimated through combining measurements of radio-synchrotron and inverse-Compton-X-ray emission, are consistent with being in a state of minimum total energy. 3C 184 and 3C 292 (and possibly 3C 322) have a heavily absorbed component of nuclear emission of N_H ~ $ few 10^{23} cm^{-2}.
We present results on the physical states of three high-redshift powerful radio galaxies (3C 292 at z=0.7, 3C 184 at z=1, and 3C322 at z=1.7). They were obtained by combining radio measurements with X-ray measurements from XMM-Newton that separate spectrally and/or spatially radio-related and hot-gas X-ray emission. Originally observed as part of a programme to trace clusters of galaxies at high redshift, none of the sources is found to lie in a rich X-ray-emitting environment similar to those of some powerful radio galaxies at low redshift, although the estimated gas pressures are sufficient to confine the radio lobes. The weak gas emission is a particularly interesting result for 3C 184, where a gravitational arc is seen, suggesting the presence of a very massive cluster. Here Chandra data complement the XMM-Newton measurements in spatially separating X-ray extended emission from that associated with the nucleus and rather small radio source. 3C 292 is the source for which the X-ray-emitting gas is measured with the greatest accuracy, and its temperature of 2 keV and luminosity of 6.5E43 erg/s are both characteristic of a poor cluster. This source allows the most accurate measurement of inverse-Compton X-ray emission associated with the radio lobes. In all structures where the magnetic-field strength can be estimated through combining measurements of radio-synchrotron and inverse-Compton-X-ray emission, the field strengths are consistent with sources being in a state of minimum total energy.
We studied the intracluster medium of the galaxy cluster CIZA J2242.8+5301 using deep XMM-Newton observations. The cluster hosts a remarkable 2-Mpc long, ~50-kpc wide radio relic that has been nicknamed the Sausage. A smaller, more irregular counter-relic is also present, along with a faint giant radio halo. We analysed the distribution of the ICM physical properties, and searched for shocks by trying to identify density and temperature discontinuities. East of the southern relic, we find evidence of shock compression corresponding to a Mach number of 1.3, and speculate that the shock extends beyond the length of the radio structure. The ICM temperature increases at the northern relic. More puzzling, we find a wall of hot gas east of the cluster centre. A partial elliptical ring of hot plasma appears to be present around the merger. While radio observations and numerical simulations predict a simple merger geometry, the X-ray results point towards a more complex merger scenario.
We present an analysis of deep XMM-Newton and Chandra observations of the z=1.05 galaxy cluster XLSSJ022403.9-041328 (hereafter XLSSC 029), detected in the XMM-Newton large scale structure survey. Density and temperature profiles of the X-ray emitting gas were used to perform a hydrostatic mass analysis of the system. This allowed us to measure the total mass and gas fraction in the cluster and define overdensity radii R500 and R2500. The global properties of XLSSC 029 were measured within these radii and compared with those of the local population. The gas mass fraction was found to be consistent with local clusters. The mean metal abundance was 0.18 +0.17 -0.15 Zsol, with the cluster core regions excluded, consistent with the predicted and observed evolution. The properties of XLSSC 029 were then used to investigate the position of the cluster on the M-kT, YX-M, and LX-M scaling relations. In all cases the observed properties of XLSSC 029 agreed well with the simple self-similar evolution of the scaling relations. This is the first test of the evolution of these relations at z > 1 and supports the use of the scaling relations in cosmological studies with distant galaxy clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا