CSL1 is a peculiar object discovered in the OACDF. Photometric and spectroscopic investigation strongly suggest that it may be the first case of gravitational lensing by cosmic string. In this paper we derive and discuss a statistical excess of a gravitational lens candidates present in OACDF region surrounding CSL1. This excess cannot be explained on the basis of conventional gravitational lens statistic alone, but is compatible with the proposed cosmic string scenario.
In this article we describe the search for white dwarfs (WDs) in the multi-band photometric data of the Capodimonte deep field survey. The WD candidates were selected through the V-R_C vs B-V color-color diagram. For two bright objects, the WD nature has been confirmed spectroscopically, and the atmospheric parameters (Teff and logg) have been determined. We have computed synthetic stellar population models for the observed field and the expected number of white dwarfs agrees with the observations. The possible contamination by turn-off and horizontal branch halo stars has been estimated. The quasar (QSO) contamination has been determined by comparing the number of WD candidates in different color bins with state-of-the-art models and previous observations. The WD space density is measured at different distances from the Sun. The total contamination (non-degenerate stars + QSOs) in our sample is estimated to be around 30%. This work should be considered a small experiment in view of more ambitious projects to be performed in the coming years in larger survey contexts.
We report ten lens candidates in the E-CDFS from the GEMS survey. Nine of the systems are new detections and only one of the candidates is a known lens system. For the most promising five systems including the known lens system, we present results from preliminary lens mass modelling, which tests if the candidates are plausible lens systems. Photometric redshifts of the candidate lens galaxies are obtained from the COMBO-17 galaxy catalog. Stellar masses of the candidate lens galaxies within the Einstein radius are obtained by using the $z$-band luminosity and the $V-z$ color-based stellar mass-to-light ratios. As expected, the lensing masses are found to be larger than the stellar masses of the candidate lens galaxies. These candidates have similar dark matter fractions as compared to lenses in SLACS and COSMOS. They also roughly follow the halo mass-stellar mass relation predicted by the subhalo abundance matching technique. One of the candidate lens galaxies qualifies as a LIRG and may not be a true lens because the arc-like feature in the system is likely to be an active region of star formation in the candidate lens galaxy. Amongst the five best candidates, one is a confirmed lens system, one is a likely lens system, two are less likely to be lenses and the status of one of the candidates is ambiguous. Spectroscopic follow-up of these systems is still required to confirm lensing and/or for more accurate determination of the lens masses and mass density profiles.
We report new high-quality galaxy scale strong lens candidates found in the Kilo Degree Survey data release 4 using Machine Learning. We have developed a new Convolutional Neural Network (CNN) classifier to search for gravitational arcs, following the prescription by cite{2019MNRAS.484.3879P} and using only $r-$band images. We have applied the CNN to two predictive samples: a Luminous red galaxy (LRG) and a bright galaxy (BG) sample ($r<21$). We have found 286 new high probability candidates, 133 from the LRG sample and 153 from the BG sample. We have then ranked these candidates based on a value that combines the CNN likelihood to be a lens and the human score resulting from visual inspection (P-value) and we present here the highest 82 ranked candidates with P-values $ge 0.5$. All these high-quality candidates have obvious arc or point-like features around the central red defector. Moreover, we define the best 26 objects, all with scores P-values $ge 0.7$ as a golden sample of candidates. This sample is expected to contain very few false positives and thus it is suitable for follow-up observations. The new lens candidates come partially from the the more extended footprint adopted here with respect to the previous analyses, partially from a larger predictive sample (also including the BG sample). These results show that machine learning tools are very promising to find strong lenses in large surveys and more candidates that can be found by enlarging the predictive samples beyond the standard assumption of LRGs. In the future, we plan to apply our CNN to the data from next-generation surveys such as the Large Synoptic Survey Telescope, Euclid, and the Chinese Space Station Optical Survey.
We present results from a systematic search for strong gravitational lenses in the GOODS ACS data. The search technique involves creating a sample of likely lensing galaxies, which we define as massive early-type galaxies in a redshift range 0.3 < z <1.3. The target galaxies are selected by color and magnitude, giving a sample of 1092 galaxies. For each galaxy in the sample, we subtract a smooth description of the galaxy light from the z_{850}-band data. The residuals are examined, along with true-color images created from the B_{435}V_{606}i_{775} data, for morphologies indicative of strong lensing. We present our six most promising lens candidates, as well as our full list of candidates.
We define a sample of 62 galaxies in the Chandra Deep Field-North whose Spitzer IRAC SEDs exhibit the characteristic power-law emission expected of luminous AGN. We study the multiwavelength properties of this sample, and compare the AGN selected in this way to those selected via other Spitzer color-color criteria. Only 55% of the power-law galaxies are detected in the X-ray catalog at exposures of >0.5 Ms, although a search for faint emission results in the detection of 85% of the power-law galaxies at the > 2.5 sigma detection level. Most of the remaining galaxies are likely to host AGN that are heavily obscured in the X-ray. Because the power-law selection requires the AGN to be energetically dominant in the near- and mid-infrared, the power-law galaxies comprise a significant fraction of the Spitzer-detected AGN population at high luminosities and redshifts. The high 24 micron detection fraction also points to a luminous population. The power-law galaxies comprise a subset of color-selected AGN candidates. A comparison with various mid-infrared color selection criteria demonstrates that while the color-selected samples contain a larger fraction of the X-ray luminous AGN, there is evidence that these selection techniques also suffer from a higher degree of contamination by star-forming galaxies in the deepest exposures. Considering only those power-law galaxies detected in the X-ray catalog, we derive an obscured fraction of 68% (2:1). Including all of the power-law galaxies suggests an obscured fraction of < 81% (4:1).
Log in to be able to interact and post comments
comments
Fetching comments
Sorry, something went wrong while fetching comments!
M.V.Sazhin
,O.S.Khovanskaya
,M.Capaccioli
.
(2004)
.
"Lens candidates in the Capodimonte Deep Field in the vicinity of the CSL1 object"
.
Mikhail Sazhin V.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا