No Arabic abstract
Results of a 4 year monitoring campaign of the SMC using the Rossi X-ray timing Explorer (RXTE) are presented. This large dataset makes possible detailed investigation of a significant sample of SMC X-ray binaries. 8 new X-ray pulsars were discovered and a total of 20 different systems were detected. Spectral and timing parameters were obtained for 18. In the case of 10 pulsars, repeated outbursts were observed, allowing determination of candidate orbital periods for these systems. We also discuss the spatial and pulse period distributions of the SMC pulsars.
We present long-term optical and RXTE data of two X-ray binary pulsars in the Small Magellanic Cloud, SXP46.6 and SXP6.85. The optical light curves of both sources show substantial (~0.5-0.8 mag) changes over the time span of the observations. While the optical data for SXP6.85 do not reveal any periodic behaviour, by detrending the optical measurements for SXP46.6 we find an orbital period of ~137 days, consistent with results from the X-ray data. The detection of Type I X-ray outbursts from SXP46.6, combined with the fact that we also see optical outbursts at these times, implies that SXP46.6 is a high orbital eccentricity system. Using contemporaneous optical spectra of SXP46.6 we find that the equivalent width of the H_alpha emission line changes over time indicating that the size of the circumstellar disc varies. By studying the history of the colour variations for SXP6.85 we find that the source gets redder as it brightens which can also be attributed to changes in the circumstellar disc. We do not find any correlation between the X-ray and optical data for SXP6.85. The results for SXP6.85 suggest that it is a low eccentricity binary and that the optical modulations are due to the Be phenomenon.
We have monitored 41 Be/X-ray binary systems in the Small Magellanic Cloud over ~9 years using PCA-RXTE data from a weekly survey program. The resulting light curves were analysed in search of orbital modulations with the result that 10 known orbital ephemerides were confirmed and refined, while 10 new ones where determined. A large number of X-ray orbital profiles are presented for the first time, showing similar characteristics over a wide range of orbital periods. Lastly, three pulsars: SXP46.4, SXP89.0 and SXP165 were found to be misidentifications of SXP46.6, SXP91.1 and SXP169, respectively.
We investigate the X-ray and optical properties of a sample of X-ray bright sources from the Small Magellanic Cloud (SMC) Wing Survey. We have detected two new pulsars with pulse periods of 65.8 s (CXOU J010712.6-723533) and 700 s (CXOU J010206.6-714115), and present observations of two previously known pulsars RX J0057.3-7325 (SXP101) and SAX J0103.2-7209 (SXP348). Our analysis has led to three new optical identifications for the detected pulsars. We find long-term optical periods for two of the pulsars, CXOU J010206.6-714115 and SXP101, of 267 and 21.9 d, respectively. Spectral analysis of a sub-set of the sample shows that the pulsars have harder spectra than the other sources detected. By employing a quantile-based colour-colour analysis we are able to separate the detected pulsars from the rest of the sample. Using archival catalogues we have been able to identify counterparts for the majority of the sources in our sample. Combining this with our results from the temporal analysis of the Chandra data and archival optical data, the X-ray spectral analysis, and by determining the X-ray to optical flux ratios we present preliminary classifications for the sources. In addition to the four detected pulsars, our sample includes two candidate foreground stars, 12 probable active galactic nuclei, and five unclassified sources.
Many of the high mass X-ray binaries (HMXRBs) discovered in recent years in our Galaxy are characterized by a high absorption, most likely intrinsic to the system, which hampers their detection at the softest X-ray energies. We have undertaken a search for highly-absorbed X-ray sources in the Small Magellanic Cloud (SMC) with a systematic analysis of 62 XMM-Newton SMC observations. We obtained a sample of 30 sources showing evidence for an equivalent hydrogen column density larger than 3x10^23 cm^-2. Five of these sources are clearly identified as HMXRBs: four were already known (including three X-ray pulsars) and one, XMM J005605.8-720012, reported here for the first time. For the latter, we present optical spectroscopy confirming the association with a Be star in the SMC. The other sources in our sample have optical counterparts fainter than magnitude ~16 in the V band, and many of them have possible NIR counterparts consistent with highly reddened early type stars in the SMC. While their number is broadly consistent with the expected population of background highly-absorbed active galactic nuclei, a few of them could be HMXRBs in which an early type companion is severely reddened by local material.
The last comprehensive catalogue of high-mass X-ray binaries in the Small Magellanic Cloud (SMC) was published about ten years ago. Since then new such systems were discovered, mainly by X-ray observations with Chandra and XMM-Newton. For the majority of the proposed HMXBs in the SMC no X-ray pulsations were discovered as yet, and unless other properties of the X-ray source and/or the optical counterpart confirm their HMXB nature, they remain only candidate HMXBs. From a literature search we collected a catalogue of 148 confirmed and candidate HMXBs in the SMC and investigated their properties to shed light on their real nature. Based on the sample of well-established HMXBs (the pulsars), we investigated which observed properties are most appropriate for a reliable classification. We defined different levels of confidence for a genuine HMXB based on spectral and temporal characteristics of the X-ray sources and colour-magnitude diagrams from the optical to the infrared of their likely counterparts. We also took the uncertainty in the X-ray position into account. We identify 27 objects that probably are misidentified because they lack an infrared excess of the proposed counterpart. They were mainly X-ray sources with a large positional uncertainty. This is supported by additional information obtained from more recent observations. Our catalogue comprises 121 relatively high-confidence HMXBs (the vast majority with Be companion stars). About half of the objects show X-ray pulsations, while for the rest no pulsations are known as yet. A comparison of the two subsamples suggests that long pulse periods in excess of a few 100 s are expected for the non-pulsars, which are most likely undetected because of aperiodic variability on similar timescales and insufficiently long X-ray observations. (abbreviated)