Do you want to publish a course? Click here

Time-resolved photometry and spectroscopy of the new deeply-eclipsing SW Sextantis star HS 0728+6738

382   0   0.0 ( 0 )
 Added by Pablo Rodriguez-Gil
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present time-resolved optical spectroscopy and photometry, and far-ultraviolet spectroscopy of HS 0728+6738, a cataclysmic variable discovered in the Hamburg Quasar Survey. We show that the system is a new eclipsing member of the SW Sex class of CVs with an orbital period of 3.21 hours. We derive an orbital inclination of ~85 +- 4 degrees from the average eclipse profile, making HS 0728+6738 the highest inclination SW Sex star known. The optical and far-ultraviolet emission lines are not or only weakly occulted during the eclipse, indicating the presence of line-emission sites either far outside the Roche lobe of the primary or, more likely, above the orbital plane of the binary. The photometric light curves exhibit fast variability with a period of ~7 min, which might be related to the spin of the white dwarf.



rate research

Read More

We present optical photometry and spectroscopy of the new eclipsing Cataclysmic Variable MASTER OTJ192328.22+612413.5, discovered by the MASTER team. We find the orbital period to be P=0.16764612(5) day /4.023507(1) hour. The depth of the eclipse (2.9$pm$0.1 mag) suggests that the system is nearly edge on, and modeling of the system confirms the inclination to be between 81.3-83.6 degree. The brightness outside of eclipse varies between observations, with a change of 1.6$pm$0.1 mag. Spectroscopy reveals double-peaked Balmer emission lines. By using spectral features matching a late M-type companion, we bound the distance to be 750$pm$250 pc, depending on the companion spectral type. The source displays 2 mag brightness changes on timescales of days. The amplitude of these changes, along with the spectrum at the faint state, suggest the system is possibly a dwarf nova. The lack of any high excitation HeII lines suggests this system is not magnetically dominated. The light curve in both quiescence and outburst resembles that of Lanning 386, implying MASTER OTJ192328.22+612413.5 is a possible cross between a dwarf nova and a SW Sextantis star.
We present time-resolved spectroscopy and circular spectropolarimetry of the SW Sex star RX J1643.7+3402. We find significant polarisation levels exhibiting a variability at a period of 19.38 +- 0.39 min. In addition, emission-line flaring is found predominantly at twice the polarimetric period. These two findings are strong evidences in favour of the presence of a magnetic white dwarf in the system. We interpret the measured periodicities in the context of our magnetic accretion model for SW Sex stars. In contrast with LS Pegasi -the first SW Sex star discovered to have modulated circular polarisation- the polarisation in RX J1643.7+3402 is suggested to vary at 2(omega - Omega), while the emission lines flare at (omega - Omega). However, a 2omega/omega interpretation cannot be ruled out. Together with LS Peg and V795 Her, RX J1643.7+3402 is the third SW Sex star known to exhibit modulated circular polarisation.
The eclipsing polar CSS081231 turned bright (V_max ~ 14.5) in late 2008 and was subsequently observed intensively with small and medium-sized telescopes. A homogeneous analysis of this comprehensive dataset comprising 109 eclipse epochs is presented and a linear ephemeris covering the five years of observations, about 24000 orbital cycles, is derived. Formally this sets rather tight constraints on the mass of a hypothetical circumbinary planet, M_pl <= 2 M_Jup. This preliminary result needs consolidation by long-term monitoring of the source. The eclipse lasts 433.08 +- 0.65 s, and the orbital inclination is found to be i=79.3 - 83.7 degrees. The centre of the bright phase displays accretion-rate dependent azimuthal shifts. No accretion geometry is found that explains all observational constraints, suggesting a complex accretion geometry with possible pole switches and a likely non-dipolar field geometry.
409 - D. W. Hoard 2003
We present an analysis of the first far-ultraviolet observations of the SW Sextantis-type cataclysmic variable DW Ursae Majoris, obtained in November 2001 with the Far Ultraviolet Spectroscopic Explorer. The time-averaged spectrum of DW UMa shows a rich assortment of emission lines (plus some contamination from interstellar absorption lines including molecular hydrogen). Accretion disk model spectra do not provide an adequate fit to the far-ultraviolet spectrum of DW UMa. We constructed a light curve by summing far-ultraviolet spectra extracted in 60-sec bins; this shows a modulation on the orbital period, with a maximum near photometric phase 0.93 and a minimum half an orbit later. No other periodic variability was found in the light curve data. We also extracted spectra in bins spanning 0.1 in orbital phase; these show substantial variation in the profile shapes and velocity shifts of the emission lines during an orbital cycle of DW UMa. Finally, we discuss possible physical models that can qualitatively account for the observed far-ultraviolet behavior of DW UMa, in the context of recent observational evidence for the presence of a self-occulting disk in DW UMa and the possibility that the SW Sex stars may be the intermediate polars with the highest mass transfer rates and/or weakest magnetic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا