Do you want to publish a course? Click here

Where are the High Velocity Clouds in Local Group Analogs?

108   0   0.0 ( 0 )
 Added by D. J. Pisano
 Publication date 2004
  fields Physics
and research's language is English
 Authors D.J. Pisano




Ask ChatGPT about the research

High-velocity clouds (HVCs) are clouds of HI seen around the Milky Way with velocities inconsistent with Galactic rotation, have unknown distances and masses and controversial origins. One possibility is that HVCs are associated with the small dark matter halos seen in models of galaxy formation and distributed at distances of 150 kpc - 1 Mpc. We report on our attempts to detect the analogs to such putative extragalactic clouds in three groups of galaxies similar to our own Local Group using the ATNF Parkes telescope and Compact Array. Eleven dwarf galaxies were found, but no HI clouds lacking stars were detected. Using the population of compact HVCs around the Milky Way as a template, we find that our non-detection of analogs implies that they must be clustered within 160 kpc of the Milky Way (and other galaxies) with an average HI mass <4x10^5 M(sun) at the 95% confidence level. This is in accordance with recent limits derived by other authors. If our groups are true analogs to the Local Group, then this makes the original Blitz et al. and Braun & Burton picture of HVCs residing out to 1 Mpc from the Milky Way extremely unlikely. The total HI mass in HVCs, < 10^8 M(sun), implies that there is not a large reservoir of neutral hydrogen waiting to be accreted onto the Milky Way. Any substantial reservoir of baryonic matter must be mostly ionized or condensed enough as to be undetectable.



rate research

Read More

Motivated by the apparent order-of-magnitude discrepancy between the observed number of Local Group satellite galaxies, and that predicted by Lambda-CDM hierarchical clustering cosmologies, we explore an alternate suggestion - perhaps the missing satellites are not actually ``missing, but are instead ``in disguise. The disguise we consider here is that of the classical HI High-Velocity Clouds. Is it possible that what have been thought of traditionally as a ``Galactic phenomenon, are actually the building blocks of the Local Group? We discuss the strengths and weaknesses of this hypothesis, and highlight avenues of future research which may provide an unequivocal resolution to this contentious issue.
A set of HI sources extracted from the north Galactic polar region by the ongoing ALFALFA survey has properties that are consistent with the interpretation that they are associated with isolated minihalos in the outskirts of the Local Group (LG). Unlike objects detected by previous surveys, such as the Compact High Velocity Clouds of Braun & Burton (1999), the HI clouds found by ALFALFA do not violate any structural requirements or halo scaling laws of the LambdaCDM structure paradigm, nor would they have been detected by extant HI surveys of nearby galaxy groups other than the LG. At a distance of d Mpc, their HI masses range between $5 x 10^4 d^2 and 10^6 d^2 solar and their HI radii between <0.4d and 1.6 d kpc. If they are parts of gravitationally bound halos, the total masses would be on order of 10^8--10^9 solar, their baryonic content would be signifcantly smaller than the cosmic fraction of 0.16 and present in a ionized gas phase of mass well exceeding that of the neutral phase. This study does not however prove that the minihalo interpretation is unique. Among possible alternatives would be that the clouds are shreds of the Leading Arm of the Magellanic Stream.
We have conducted an HI 21 cm emission-line survey using the Parkes 20cm multibeam instrument and the Australia Telescope Compact Array (ATCA) of six loose groups of galaxies chosen to be analogs to the Local Group. The goal of this survey is to make a census of the HI-rich galaxies and high-velocity clouds (HVCs) within these groups and compare these populations with those in the Local Group. The Parkes observations covered the entire volume of each group with a rms M(HI) sensitivity of 4-10x10^5 M(sun) per 3.3 km/s channel. All potential sources detected in the Parkes data were confirmed with ATCA observations at ~2 resolution and the same M(sun) sensitivity. All the confirmed sources have associated stellar counterparts; no starless HI clouds--HVC analogs--were found in the six groups. In this paper, we present a description of the survey parameters, its sensitivity and completeness. Using the population of compact HVCs (CHVCs) around the Milky Way as a template coupled with the detailed knowledge of our survey parameters, we infer that our non-detection of CHVC analogs implies that, if similar populations exist in the six groups studied, the CHVCs must be clustered within 90 kpc of group galaxies, with average M(HI) < 4x10^5 M(sun) at the 95% confidence level. The corollary is that the same must apply to Milky Way CHVCs. This is consistent with our previous results from a smaller sample of groups, and in accordance with recent observational and theoretical constraints from other authors. These results confirm that there is very little neutral matter around galaxies, and that any substantial reservoir of baryons must be in other phases.
To date, all of the reported high velocity stars (HVSs), which are believed to be ejected from the Galactic center, are blue and therefore almost certainly young. Old-population HVSs could be much more numerous than the young ones that have been discovered, but still have escaped detection because they are hidden in a much denser background of Galactic halo stars. Discovery of these stars would shed light on star formation at the Galactic center, the mechanism by which they are ejected from it, and, if they prove numerous, enable detailed studies of the structure of the dark halo. We analyze the problem of finding these stars and show that the search should be concentrated around the main-sequence turnoff (0.3<g-i<1.1) at relatively faint magnitudes (19.5<g<21.5). If the ratio of turnoff stars to B stars is the same for HVSs as it is in the local disk, such a search would yield about 1 old-population HVS per 10 deg^2. A telescope similar to the Sloan 2.5m could search about 20 deg^2 per night, implying that in short order such a population, should it exist, would show up in interesting numbers.
Compact high-velocity clouds (CHVCs) are the most distant of the HVCs in the Local Group model and would have HI volume densities of order 0.0003/cm^3. Clouds with these volume densities and the observed neutral hydrogen column densities will be largely ionized, even if exposed only to the extragalactic ionizing radiation field. Here we examine the implications of this process for models of CHVCs. We have modeled the ionization structure of spherical clouds (with and without dark matter halos) for a large range of densities and sizes, appropriate to CHVCs over the range of suggested distances, exposed to the extragalactic ionizing photon flux. Constant-density cloud models in which the CHVCs are at Local Group distances have total (ionized plus neutral) gas masses roughly 20-30 times larger than the neutral gas masses, implying that the gas mass alone of the observed population of CHVCs is about 40 billion solar masses. With a realistic (10:1) dark matter to gas mass ratio, the total mass in such CHVCs is a significant fraction of the dynamical mass of the Local Group, and their line widths would exceed the observed FWHM. Models with dark matter halos fare even more poorly; they must lie within approximately 200 kpc of the Galaxy. We show that exponential neutral hydrogen column density profiles are a natural consequence of an external source of ionizing photons, and argue that these profiles cannot be used to derive model-independent distances to the CHVCs. These results argue strongly that the CHVCs are not cosmological objects, and are instead associated with the Galactic halo.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا