Do you want to publish a course? Click here

Polarization and structure of relativistic parsec-scale AGN jets

131   0   0.0 ( 0 )
 Added by Maxim Lyutikov
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) We consider the polarization properties of optically thin synchrotron radiation emitted by relativistically moving electron--positron jets carrying large-scale helical magnetic fields. In our model, the jet is cylindrical, and the emitting plasma moves parallel to the jet axis with a characteristic Lorentz factor $Gamma$. We draw attention to the strong influence that the bulk relativistic motion of the emitting relativistic particles has on the observed polarization. We conclude that large-scale magnetic fields can explain the salient polarization properties of parsec-scale AGN jets. Since the typical degrees of polarization are $leq 15%$, the emitting parts of the jets must have comparable rest-frame toroidal and poloidal fields. In this case, most relativistic jets are strongly dominated by the toroidal magnetic field component in the observers frame, $B_phi/B_z sim Gamma$. We also discuss the possibility that relativistic AGN jets may be electromagnetically (Poynting flux) dominated. In this case, dissipation of the toroidal magnetic field (and not fluid shocks) may be responsible for particle acceleration.



rate research

Read More

We used 15 GHz multi-epoch Very Long Baseline Array (VLBA) polarization sensitive observations of 484 sources within a time interval 1996--2016 from the MOJAVE program, and also from the NRAO data archive. We have analyzed the linear polarization characteristics of the compact core features and regions downstream, and their changes along and across the parsec-scale active galactic nuclei (AGN) jets. We detected a significant increase of fractional polarization with distance from the radio core along the jet as well as towards the jet edges. Compared to quasars, BL Lacs have a higher degree of polarization and exhibit more stable electric vector position angles (EVPAs) in their core features and a better alignment of the EVPAs with the local jet direction. The latter is accompanied by a higher degree of linear polarization, suggesting that compact bright jet features might be strong transverse shocks, which enhance magnetic field regularity by compression.
A number of works reported on the existence of a large scale alignment of the polarization plane of extragalactic sources as well as the alignment of radio-sources structural axes. However, both claims and their interpretation remain controversial. For the first time we explore the parsec-scale jets alignments. Additionally, we use archival polarimetric data at different wavelengths in order to compare relative orientations of the jets and the polarization planes of their emission. Using the flux density distribution in very long baseline interferometry (VLBI) radio maps from the Astrogeo database, we determine the parsec-scale jet orientation for the largest sample of active galactic nuclei (AGN) to date. Employing the method of parallel transport and a sample statistics characterizing the jet orientation dispersion among neighbors, we test whether the identified jets are significantly aligned. We show that the parsec-scale jets in our sample do not demonstrate any significant global alignments. Moreover, the jet direction is found to be weakly correlated with the polarization plane direction at different frequencies.
256 - A. B. Pushkarev 2008
We report on an ongoing effort to image active galactic nuclei simultaneously observed at 2.3 and 8.6 GHz in the framework of a long-term VLBI project RDV (Research and Development - VLBA) started in 1994 aiming to observe compact extragalactic radio sources in the astrometric/geodetic mode. Observations of bright extragalactic sources are carried out bi-monthly making up to six sessions per year with participation of all ten VLBA antennas and up to nine additional (geodetic and EVN) radio telescopes. Analysis of single-epoch results for 370 quasars, BL Lacs and radio galaxies is presented. We discuss VLBI core properties (flux densities, sizes, brightness temperatures), spectral characteristics of the cores and jets, evolution of brightness temperatures in the jets.
The Very Long Baseline Array has been used at 15 GHz to image the milliarcsecond structure of the Seyfert galaxies Mrk 231 and Mrk 348 at two epochs separated by about 1.7 yr. Both galaxies contain parsec-scale double radio sources whose components have brightness temperatures of 10^9-10^{11} K, implying that they are generated by synchrotron emission. The nuclear components are identified by their strong variability between epochs, indicating that the double sources represent apparently one-sided jets. Relative component speeds are measured to be ~0.1c at separations of 1.1 pc or less (for H_0 = 65 km/s/Mpc), implying that parsec-scale Seyfert jets are intrinsically different from those in most powerful radio galaxies and quasars. The lack of observed counterjets is most likely due to free-free absorption by torus gas, with an ionized density n_e > 2 X 10^5 cm^{-3} at T~8000 K, or n_e > 10^7 cm^{-3} at T~10^{6.6} K, in the inner parsec of each galaxy. The lower density is consistent with values found from X-ray absorption measurements, while the higher temperature and density are consistent with direct radio imaging of the NGC 1068 torus by Gallimore et al.
123 - M. L. Lister 2017
We present 5321 milliarcsecond-resolution total intensity and linear polarization maps of 437 active galactic nuclei (AGNs) obtained with the VLBA at 15 GHz as part of the MOJAVE survey, and also from the NRAO data archive. The former is a long-term program to study the structure and evolution of powerful parsec-scale outflows associated with AGNs. The targeted AGNs are drawn from several flux-limited radio and gamma-ray samples, and all have correlated VLBA flux densities greater than about 50 mJy at 15 GHz. Approximately 80% of these AGNs are associated with gamma-ray sources detected by the Fermi LAT instrument. The vast majority were observed with the VLBA on 5 to 15 occasions between 1996 January 19 and 2016 December 26, at intervals ranging from a month to several years, with the most typical sampling interval being six months. A detailed analysis of the linear and circular polarization evolution of these AGN jets are presented in other papers in this series.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا