Do you want to publish a course? Click here

High-resolution near-infrared speckle interferometry and radiative transfer modeling of the OH/IR star OH 104.9+2.4

64   0   0.0 ( 0 )
 Added by Thomas Driebe
 Publication date 2004
  fields Physics
and research's language is English
 Authors D. Riechers




Ask ChatGPT about the research

We present near-infrared speckle interferometry of the OH/IR star OH 104.9+2.4 in the K band obtained with the 6m telescope of the Special Astrophysical Observatory (SAO). At a wavelength of lambda = 2.12 micron the diffraction-limited resolution of 74 mas was attained. The reconstructed visibility reveals a spherically symmetric, circumstellar dust shell (CDS) surrounding the central star. The visibility function shows that the stellar contribution to the total flux at lambda = 2.12 micron is less than ~50%, indicating a rather large optical depth of the CDS. The azimuthally averaged 1-dimensional Gaussian visibility fit yields a diameter of 47 +/- 3mas (FHWM), which corresponds to 112 +/- 13 AU for an adopted distance of D = 2.38 +/- 0.24 kpc. To determine the structure and the properties of the CDS of OH 104.9+2.4, radiative transfer calculations using the code DUSTY were performed to simultaneously model its visibility and the spectral energy distribution (SED). We found that both the ISO spectrum and the visibility of OH 104.9+2.4 can be well reproduced by a radiative transfer model with an effective temperature T_eff = 2500 +/- 500 K of the central source, a dust temperature T_in = 1000 +/- 200 K at the inner shell boundary R_in = 9.1 R_star = 25.4 AU, an optical depth tau = 6.5 +/- 0.3 at 2.2 micron, and dust grain radii ranging from a_min = 0.005 +/- 0.003 micron to a_max = 0.2 +/- 0.02 micron with a power law with index -3.5. It was found that even minor changes in a_max have a major impact on both the slope and the curvature of the visibility function, while the SED shows only minor changes. Our detailed analysis demonstrates the potential of dust shell modeling constrained by both the SED and visibilities.

rate research

Read More

109 - A. Gauger 1999
We present the first diffraction-limited speckle masking observations of the oxygen-rich AGB star AFGL 2290. The data was obtained with the Russian 6m SAO telescope. At the wavelength of 2.11um a resolution of 75mas was achieved. The reconstructed image reveals that the CDS of AFGL 2290 is slightly non-spherical. The stellar contribution to the total 2.11um flux is less than ~40%. The 2D Gaussian visibility fit yields a diameter of AFGL 2290 at 2.11um of 43mas x 51mas, corresponding to 42AU x 50AU for an adopted distance of 0.98kpc. Our results provide additional constraints on the CDS of AFGL 2290, which supplement the information from the SED. We have performed radiative transfer calculations for spherically symmetric dust shell models. The observed SED at phase ~0.2 can be well reproduced at all wavelengths by a model with Teff=2000K, a dust temperature of 800K at the inner boundary, an optical depth tau_V=100 and a radius for the single-sized grains of 0.1um. However, the 2.11um visibility of the model does not match the observation. We found that the grain size is the key parameter in achieving a fit of the observed visibility while retaining the match of the SED, at least partially. Both the slope and the curvature of the visibility strongly constrain the possible grain radii. On the other hand, the SED at longer wavelengths, the silicate feature in particular, determines the dust mass loss rate and, thereby, restricts the possible optical depths of the model. With a larger grain size of 0.16um and a higher tau_V=150, the observed visibility can be reproduced preserving the match of the SED at longer wavelengths.
A search for the near-infrared water-ice absorption band was made in a number of very red OH/IR stars which are known to exhibit the 10um silicate absorption. As a by-product, accurate positions of these highly reddened objects are obtained. We derived a dust mass loss rate for each object by modelling the spectral energy distribution and the gas mass loss rate by solving the equation of motion for the dust drag wind. The derived mass loss rates show a strong correlation with the silicate optical depth as well as that of the water-ice. The stars have a high mass loss rate (> 1.0E-4 Msun/yr) with an average gas-to-dust mass ratio of 110. In objects which show the 3.1um water-ice absorption, the near-IR slope is much steeper than those with no water-ice. Comparison between our calculated mass loss rates and those derived from OH and CO observations indicates that these stars have recently increased their mass loss rates.
65 - B. Stecklum 2002
We present results of our diffraction-limited mid-infrared imaging of the massive star-forming region W3(OH) with SpectroCam-10 on the 5-m Hale telescope at wavelengths of 8.8, 11.7, and 17.9 micron. The thermal emission from heated dust grains associated with the ultracompact HII region W3(OH) is resolved and has a spatial extent of ~2 arcsec in the N band. We did not detect the hot core source W3(H_2O) which implies the presence of at least 12 mag of extinction at 11.7 micron towards this source. These results together with other data were used to constrain the properties of W3(OH) and W3(H_2O) and their envelopes by modelling the thermal dust emission.
110 - Takafumi Kamizuka 2020
Non-variable OH/IR stars are thought to have just left the asymptotic giant branch (AGB) phase. In this conventional picture, they must still show strong circumstellar extinction caused by the dust ejected during the AGB phase, and the extinction is expected to decrease over time because of the dispersal of the circumstellar dust after the cessation of the stellar mass loss. The reduction of the extinction makes the stars become apparently brighter and bluer with time especially in the near-infrared (NIR) range. We look for such long-term brightening of non-variable OH/IR stars by using 2MASS, UKIDSS, and OAOWFC survey data. As a result, we get multi-epoch NIR data taken over a 20-year period (1997-2017) for 6 of 16 non-variable OH/IR stars, and all six objects are found to be brightening. The K-band brightening rate of five objects ranges from 0.010 to 0.130 mag yr$^{-1}$, which is reasonably explained with the conventional picture. However, one OH/IR star, OH31.0-0.2, shows a rapid brightening, which cannot be explained only by the dispersal of the dust shell. Multi-color (J-, H-, and K-band) data are obtained for three objects, OH25.1-0.3, OH53.6-0.2, and OH77.9+0.2. Surprisingly, none of them appears to have become bluer, and OH53.6-0.2 is found to have been reddened with a rate of 0.013 mag yr$^{-1}$ in (J-K). Our findings suggest other mechanisms such as rapid changes in stellar properties (temperature or luminosity) or a generation of a new batch of dust grains.
We present results of a high resolution survey of OH masers in Galactic Star Forming Regions in order to study the maser emission and establish a list of suitable candidates for higher resolution instruments follow up. We used the Very Long Baseline Array (VLBA) to observe the 1665, 1667, 1612 and 1720 MHz OH maser transitions within 41 regions. These are the first high resolution observations for most of the sources. For all the transitions 30 sites of maser emission were detected, 4 of the sources have new detections, and approximately 40% of the sources in the sample exhibit highly compact structure. Finally we consider that the spectrum observed in W75N shows the early stage of a long period OH maser flare in the 1665 MHz line, the first of its kind.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا