No Arabic abstract
We present an updated phenomenological galaxy evolution model to fit the Spitzer 24, 70 and 160 microns number counts as well as all the previous mid and far infrared observations. Only a minor change of the co-moving luminosity density distribution in the previous model (Lagache, Dole, Puget 2003), combined with a slight modification of the starburst template spectra mainly between 12 and 30 microns, are required to fit all the data available. We show that the peak in the MIPS 24 micron counts is dominated by galaxies with redshift between 1 and 2, with a non negligible contribution from the z>2 galaxies (~30% at S=0.2 mJy). The very close agreement between the model and number counts at 15 and 24 microns strikingly implies that (1) the PAHs (Policyclic Aromatic Hydrocarbons) features remain prominent in the redshift band 0.5 to 2.5 and (2) the IR energy output has to be dominated by ~3 10^11 Lo to ~3 10^12 Lo galaxies from redshift 0.5 to 2.5. Combining Spitzer with the Infrared Space Observatory (ISO) deep cosmological surveys gives for the first time an unbiased view of the infrared Universe from z=0 to z=2.5.
We use infrared spectroscopy and photometry to empirically define the intrinsic, thermal infrared spectral energy distribution (i.e., 6-100 um SED) of typical active galactic nuclei (i.e., 2-10 keV luminosity, Lx=10^{42}-10^{44} ergs/s AGNs). On average, the infrared SED of typical AGNs is best described as a broken power-law at <40 um that falls steeply at >40um (i.e., at far-infrared wavelengths). Despite this fall-off at long wavelengths, at least 3 of the 11 AGNs in our sample have observed SEDs that are AGN-dominated even at 60 um, demonstrating the importance of accounting for possible AGN contribution even at far-infrared wavelengths. Our results also suggest that the average intrinsic AGN 6-100 um SED gets bluer with increasing X-ray luminosity, a trend seen both within our sample and also when we compare against the intrinsic SEDs of more luminous quasars (i.e., Lx>10^{44} ergs/s). We compare our intrinsic AGN SEDs with predictions from dusty torus models and find they are more closely matched by clumpy, rather than continuous, torus models. Next, we use our intrinsic AGN SEDs to define a set of correction factors to convert either monochromatic infrared or X-ray luminosities into total intrinsic AGN infrared (i.e., 8-1000 um) luminosities. Finally, we outline a procedure that uses our newly defined intrinsic AGN infrared SEDs, in conjunction with a selection of host-galaxy templates, to fit the infrared photometry of composite galaxies and measure the AGN contribution to their total infrared output. We verify the accuracy of our SED fitting procedure by comparing our results to two independent measures of AGN contribution. Our SED fitting procedure opens up the possibility of measuring the intrinsic AGN luminosities of large numbers of galaxies with well-sampled infrared data (e.g., IRAS, ISO, Spitzer and Herschel).
The dominant source of electromagnetic energy in the Universe today (over ultraviolet, optical and near-infrared wavelengths) is starlight. However, quantifying the amount of starlight produced has proven difficult due to interstellar dust grains which attenuate some unknown fraction of the light. Combining a recently calibrated galactic dust model with observations of 10,000 nearby galaxies we find that (integrated over all galaxy types and orientations) only (11 +/- 2)% of the 0.1 micron photons escape their host galaxies; this value rises linearly (with log(lambda)) to (87 +/- 3)% at 2.1 micron. We deduce that the energy output from stars in the nearby Universe is (1.6+/-0.2) x 10^{35} W Mpc^{-3} of which (0.9+/-0.1) x 10^{35} W Mpc^{-3} escapes directly into the inter-galactic medium. Some further ramifications of dust attenuation are discussed, and equations that correct individual galaxy flux measurements for its effect are provided.
Finding the sources responsible for the hydrogen reionization is one of the most pressing issues in cosmology. Bright QSOs are known to ionize their surrounding neighborhood, but they are too few to ensure the required HI ionizing background. A significant contribution by faint AGNs, however, could solve the problem, as recently advocated on the basis of a relatively large space density of faint active nuclei at z>4. We have carried out an exploratory spectroscopic program to measure the HI ionizing emission of 16 faint AGNs spanning a broad U-I color interval, with I~21-23 and 3.6<z<4.2. These AGNs are three magnitudes fainter than the typical SDSS QSOs (M1450<~-26) which are known to ionize their surrounding IGM at z>~4. The LyC escape fraction has been detected with S/N ratio of ~10-120 and is between 44 and 100% for all the observed faint AGNs, with a mean value of 74% at 3.6<z<4.2 and -25.1<M1450<-23.3, in agreement with the value found in the literature for much brighter QSOs (M1450<~-26) at the same redshifts. The LyC escape fraction of our faint AGNs does not show any dependence on the absolute luminosities or on the observed U-I colors. Assuming that the LyC escape fraction remains close to ~75% down to M1450~-18, we find that the AGN population can provide between 16 and 73% (depending on the adopted luminosity function) of the whole ionizing UV background at z~4, measured through the Lyman forest. This contribution increases to 25-100% if other determinations of the ionizing UV background are adopted. Extrapolating these results to z~5-7, there are possible indications that bright QSOs and faint AGNs can provide a significant contribution to the reionization of the Universe, if their space density is high at M1450~-23.
In the context stellar reionization in the standard cold dark matter model, we analyze observations at z~6 and are able to draw three significant conclusions with respect to star formation and the state of the intergalactic medium (IGM) at z~6. (1) An initial stellar mass function (IMF) more efficient, by a factor of 10-20, in producing ionizing photons than the standard Salpeter IMF is required at z~6. This may be achieved by having either (A) a metal-enriched IMF with and a lower mass cutoff of >= 30Msun or (B) 2-4% of stellar mass being Population III massive metal-free stars at z~6. While there is no compelling physical reason or observational evidence to support (A), (B) could be fulfilled plausibly by continued existence of some pockets of uncontaminated, metal-free gas for star formation. (2) The volume-weighted neutral fraction of the IGM of <f_HI>_V~ 10^-4 at z=5.8 inferred from the SDSS observations of QSO absorption spectra provides enough information to ascertain that reionization is basically complete with at most ~0.1-1% of IGM that is un-ionized at z=5.8. (3) Barring some extreme evolution of the IMF, the neutral fraction of the IGM is expected to rise quickly toward high redshift from the point of HII bubble percolation, with the mean neutral fraction of the IGM expected to reach 6-12% at z=6.5, 13-27% at z=7.7 and 22-38% at z=8.8.
We provide constraints on the AGN contribution to the mid-IR extragalactic background light from a correlation analysis of deep X-ray and mid-IR observations in two regions centred on the Lockman Hole (LH) and Hubble Deep Field North (HDFN). Among the 76 galaxies detected by XMM in the LH area (200 square arcminutes), 24 show mid-IR emission, but the relative percentage of X-ray sources with mid-IR counterparts increases with the band energy: from 30% of the 0.5-2 keV sources up to 63% of the 5-10 keV sources. In contrast, only a small fraction of the mid-IR sources (around 10%) show X-ray emission. In the region centred on the HDFN (24 square arcminutes), 25% of the mid-IR sources are detected in the X-ray, while 30-40% of the X-ray sources show mid-IR emission. Under the conservative assumption that all XMM sources are AGN-dominated, AGNs contribute 15% of the total mid-IR flux in the LH. For the HDFN we have assumed that AGN-dominated sources are luminous X-ray sources with radio to X-ray SEDs typical of local AGNs, in which case we find that 18% of the mid-IR flux are due to AGN emission. If we put together all the existing information from the deepest HDFN data to the shallow large-area BeppoSAX observations in the ELAIS S1 region using the median mid-IR to X-ray spectral indices as a function of the X-ray flux, we find an AGN contribution to the 15um background of 17%. We conclude that the population of IR luminous galaxies detected in the ISOCAM deep surveys are mainly constituted by dust-obscured starbursts.