No Arabic abstract
Integral field spectroscopy of the inner region of the Galactic Center, over a field of roughly 40x40 was obtained at 2.06 microns (He I) and 2.16 microns (Brackett-gamma) using BEAR, an imaging Fourier Transform Spectrometer, at spectral resolutions respectively of 52.9 km/s and 21.3 km/s, and a spatial resolution of ~0.5. The analysis of the data was focused on the kinematics of the gas flows, traditionally called the Minispiral, concentrated in the neighborhood of the central black hole, Sgr A*. From the decomposition into several velocity components of the line profile extracted at each point of the field, velocity features were identified. Nine distinguishable structures are described: the standard Northern Arm, Eastern Arm, Bar, Western Arc, and five additional, coherently-moving patches of gas. From this analysis, the Northern Arm appears not limited, as usually thought, to the bright, narrow North-South lane seen on intensity images, but it instead consists of a weak, continuous, triangular-shaped surface, drawn out into a narrow stream in the vicinity of Sgr A* where it shows a strong velocity gradient, and a bright western rim. The Eastern Arm is split into three components. We also report extinction of some interstellar structures by others, providing information on their relative position along the line of sight. A system of Keplerian orbits can be fitted to most of the Northern Arm, and the bright rim of this feature can be interpreted in terms of line-of-sight orbit crowding caused by the warping of the flowing surface at the western edge facing Sgr A*. The question of the origin of the ionized gas is addressed and a discussion of the lifetime of these features is presented.
Integral field spectroscopy of the central parsec of the Galactic Center was obtained at 2.06 microns using BEAR, an imaging Fourier Transform Spectrometer, at a spectral resolution of 74 km/s. Sixteen stars were confirmed as helium stars by detecting the He I 2.058 microns line in emission, providing a homogeneous set of fully resolved line profiles. These observations allow us to discard some of the earlier detections of such stars in the central cluster and to add three new stars. The sources detected in the BEAR data were compared with adaptive optics images in the K band to determine whether the emission was due to single stars. Two sub-classes of almost equal number are clearly identified from the width of their line profiles, and from the brightness of their continuum. Most of the emission lines show a P Cygni profile. From these results, we propose that the latter group is formed of stars in or near the LBV phase, and the other one of stars at the WR stage. The division into two groups is also shown by their spatial distribution, with the narrow-line stars in a compact central cluster (IRS 16) and the other group distributed at the periphery of the central cluster of hot stars. In the same data cube, streamers of interstellar helium gas are also detected. The helium emission traces the densest parts of the SgrA West Mini-Spiral. Several helium stars have a radial velocity comparable to the velocity of the interstellar gas in which they are embedded. In the final discussion, all these findings are examined to present a possible scenario for the formation of very massive stars in the exceptional conditions of the vicinity of the central Black Hole.
We present the results of a re-examination of a [Ne II] line emission data cube (lambda 12.8 mu m) and discuss the kinematic structure of the inner sim 3 times 4 pc of the Galaxy. The quality of [Ne II] as a tracer of ionized gas is examined by comparing it to radio data. A three dimensional representation of the data cube allows us to disentangle features which are projected onto the same location on the sky. A model of gas streams in different planes is fitted to the data. We find that most of the material is located in a main plane which itself is defined by the inner edge of the Circum-Nuclear Disk in the Galactic Center. Finally, we present a possible three dimensional model of the gas streams.
The few central parsecs of the Galaxy are known to contain a surprising population of early-type stars, including at least 30 Wolf-Rayet stars and luminous blue variables (LBV), identified thanks to their strong emission lines. Despite the presence of emission from ionised interstellar material in the same lines, the latest advances in spectro-imaging have made it possible to use the absorption lines of the OB stars to characterise them as well. This stellar population is particularly intriguing in the deep potential well of the 4 million solar mass black hole Sgr A*. We will review the properties of these early-type stars known from spectro-imagery, and discuss possible formation scenarios.
This work was conducted as part of the SPECPDR program, dedicated to the study of very small particles and astrochemistry, in Photo-Dissociation Regions (PDRs). We present the analysis of the mid-IR spectro-imagery observations of Ced 201, NCG 7023 East and North-West and rho-Ophiuchi West filament. Using the data from all four modules of the InfraRed Spectrograph onboard the Spitzer Space Telescope, we produced a spectral cube ranging from 5 to 35 um for each one of the observed PDRs. The resulting cubes were analysed using Blind Signal Separation methods (NMF and FastICA). For Ced 201, rho-Ophiuchi West filament and NGC 7023 East, we find that two signals can be extracted from the original data cubes, which are 5 to 35 um spectra. The main features of the first spectrum are a strong continuum emission at long wavelengths, and a broad 7.8 um band. On the contrary, the second spectrum exhibits the classical Aromatic Infrared Bands (AIBs) and no continuum. The reconstructed spatial distribution maps show that the latter spectrum is mainly present at the cloud surface, close to the star whereas the first one is located slightly deeper inside the PDR. The study of the spectral energy distribution of Ced 201 up to 100 um suggests that, in cool PDRs, the 5-25 um continuum is carried by Very Small Grains (VSGs). The AIB spectra in the observed objects can be interpreted as the contribution of neutral and positively-charged Polycyclic Aromatic Hydrocarbons (PAHs). We extracted the 5 to 25 um emission spectrum of VSGs in cool PDRs, these grains being most likely carbonaceous. We show that the variations of the mid-IR (5-35 um) spectra of PDRs can be explained by the photo-chemical processing of these VSGs and PAHs, VSGs being the progenitors of free PAH.
Radio magnetars are exotic sources noted for their diverse spectro-temporal phenomenology and pulse profile variations over weeks to months. Unusual for radio magnetars, the Galactic Center (GC) magnetar $rm PSR~J1745-2900$ has been continually active since its discovery in 2013. We monitored the GC magnetar at $rm 4-8~GHz$ for 6 hours in August$-$September 2019 using the Robert C. Byrd Green Bank Telescope. During our observations, the GC magnetar emitted a flat fluence spectrum over $rm 5-8~GHz$ to within $2sigma$ uncertainty. From our data, we estimate a $rm 6.4~GHz$ period-averaged flux density, $overline{S}_{6.4} approx (240 pm 5)~mu$Jy. Tracking the temporal evolution of $overline{S}_{6.4}$, we infer a gradual weakening of GC magnetar activity during $2016-2019$ relative to that between $2013-2015.5$. Typical single pulses detected in our study reveal marginally resolved sub-pulses with opposing spectral indices, a feature characteristic of radio magnetars but unseen in rotation-powered pulsars. However, unlike in fast radio bursts, these sub-pulses exhibit no perceptible radio frequency drifts. Throughout our observing span, $rm simeq 5~ms$ scattered pulses significantly jitter within two stable emission components of widths, $rm 220~ms$ and $rm 140~ms$, respectively, in the average pulse profile.