Do you want to publish a course? Click here

A deep survey of heavy element lines in planetary nebulae -- II. Recombination line abundances and evidence for ultra-cold plasma

112   0   0.0 ( 0 )
 Added by Yiannis Tsamis
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

[Abridged] Deep optical observations of the spectra of 12 Galactic planetary nebulae (PNe) and 3 Magellanic Cloud PNe were presented in Paper I by Tsamis et al. (2003b), who carried out an abundance analysis using the collisionally excited forbidden lines. Here, the relative intensities of faint optical recombination lines (ORLs) from ions of carbon, nitrogen and oxygen are analysed in order to derive the abundances of these ions relative to hydrogen. We define an abundance discrepancy factor (ADF) as the ratio of the abundance derived for a heavy element ion from its recombination lines to that derived for the same ion from its ultraviolet, optical or infrared collisionally excited lines (CELs). All of the PNe in our sample are found to have ADFs that exceed unity. There is no dependence of the magnitude of the ADF upon the excitation energy of the UV, optical or IR CEL transition used, indicating that classical nebular temperature fluctuations--i.e. in a chemically homogeneous medium--are not the cause of the observed abundance discrepancies. Instead, we conclude that the main cause of the discrepancy is enhanced ORL emission from cold ionized gas located in hydrogen-deficient clumps inside the main body of the nebulae. We have developed a new electron temperature diagnostic, based upon the relative intensities of the OII 4f-3d 4089A and 3p-3s 4649A recombination transitions. For six out of eight PNe for which both transitions are detected, we derive O2+ ORL electron temperatures of <300 K, very much less than the O2+ forbidden-line and Balmer jump temperatures derived for the same nebulae. These results provide direct observational evidence for the presence of H-deficient, cold plasma regions within the nebulae, consistent with gas cooled largely by infrared fine structure and recombination transitions.



rate research

Read More

297 - Y. G. Tsamis 2003
We present spectrophotometry of 12 Galactic and 3 Magellanic Cloud planetary nebulae (PNe). Nine of the Galactic PNe were observed by scanning the slit across the PN. We use the fluxes of collisionally excited lines (CELs) to derive electron densities (Ds) and temperatures (Ts), and ionic abundances. We find that the Ds derived from optical CEL ratios are systematically higher than those derived from the ratios of the IR fine-structure (FS) lines of [OIII], indicating the presence of significant density variations within the PNe. We also compare Ts obtained from the ratio of optical nebular to auroral [OIII] lines with those obtained from the ratio of [OIII] optical to IR FS lines. We find that when the latter are derived using Ds based on the [OIII] 52um/88um ratio, they yield values that are significantly higher than the optical [OIII] Ts. Contrasting this, [OIII] optical/IR Ts derived using the higher Ds obtained from [ClIII] 5517A/5537A ratios show much closer agreement with optical [OIII] Ts, implying that the observed [OIII] optical/IR ratios are significantly weighted by Ds in excess of the critical densities of both [OIII] FS lines. Consistent with this, ionic abundances derived from [OIII] and [NIII] FS lines using Ds from optical CELs show much better agreement with abundances derived for the same ions from optical and UV CELs than do abundances derived from the FS lines using the lower Ds obtained from the 52um/88um ratios. The behaviour of Ts obtained making use of the T-insensitive IR FS lines provides no support for significant T-fluctuations within the PNe that could be responsible for derived Balmer jump Ts being lower than those obtained from the much more T-sensitive [OIII] optical lines.
Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNs) have been found to give abundances that are much larger in some cases than abundances from collisionally-excited forbidden lines (CELs). The origins of this abundance discrepancy are highly debated. We present new spectroscopic observations of O II and C II recombination lines for six planetary nebulae. With these data we compare the abundances derived from the optical recombination lines with those determined from collisionally-excited lines. Combining our new data with published results on RLs in other PNs, we examine the discrepancy in abundances derived from RLs and CELs. We find that there is a wide range in the measured abundance discrepancy Delta(O+2) = log O+2(RL) - log O+2(CEL), ranging from approximately 0.1 dex up to 1.4 dex. Most RLs yield similar abundances, with the notable exception of O II multiplet V15, known to arise primarily from dielectronic recombination, which gives abundances averaging 0.6 dex higher than other O II RLs. We compare Delta(O+2) against a variety of physical properties of the PNs to look for clues as to the mechanism responsible for the abundance discrepancy. The strongest correlations are found with the nebula diameter and the Balmer surface brightness. An inverse correlation of Delta(O+2) with nebular density is also seen. Similar results are found for carbon in comparing C II RL abundances with ultraviolet measurements of C III].
We present high quality optical spectroscopic observations of the planetary nebula (PN) Hf 2-2. The spectrum exhibits many prominent optical recombination lines (ORLs) from heavy element ions. Analysis of the H {sc i} and He {sc i} recombination spectrum yields an electron temperature of $sim 900$ K, a factor of ten lower than given by the collisionally excited [O {sc iii}] forbidden lines. The ionic abundances of heavy elements relative to hydrogen derived from ORLs are about a factor of 70 higher than those deduced from collisionally excited lines (CELs) from the same ions, the largest abundance discrepancy factor (adf) ever measured for a PN. By comparing the observed O {sc ii} $lambda$4089/$lambda$4649 ORL ratio to theoretical value as a function of electron temperature, we show that the O {sc ii} ORLs arise from ionized regions with an electron temperature of only $sim 630$ K. The current observations thus provide the strongest evidence that the nebula contains another previously unknown component of cold, high metallicity gas, which is too cool to excite any significant optical or UV CELs and is thus invisible via such lines. The existence of such a plasma component in PNe provides a natural solution to the long-standing dichotomy between nebular plasma diagnostics and abundance determinations using CELs on the one hand and ORLs on the other.
(abridged) Deep long-slit optical spectrophotometric observations are presented for 25 Galactic bulge planetary nebulae (GBPNe) and 6 Galactic disk planetary nebulae (GDPNe). The spectra, combined with archival ultraviolet spectra obtained with the International Ultraviolet Explorer (IUE) and infrared spectra obtained with the Infrared Space Observatory (ISO), have been used to carry out a detailed plasma diagnostic and element abundance analysis utilizing both collisional excited lines (CELs) and optical recombination lines (ORLs). Comparisons of plasma diagnostic and abundance analysis results obtained from CELs and from ORLs reproduce many of the patterns previously found for GDPNe. In particular we show that the large discrepancies between electron temperatures (Tes) derived from CELs and from ORLs appear to be mainly caused by abnormally low values yielded by recombination lines and/or continua. Similarly, the large discrepancies between heavy element abundances deduced from ORLs and from CELs are largely caused by abnormally high values obtained from ORLs, up to tens of solar in extreme cases. It appears that whatever mechanisms are causing the ubiquitous dichotomy between CELs and ORLs, their main effects are to enhance the emission of ORLs, but hardly affect that of CELs. It seems that heavy element abundances deduced from ORLs may not reflect the bulk composition of the nebula. Rather, our analysis suggests that ORLs of heavy element ions mainly originate from a previously unseen component of plasma of Tes of just a few hundred Kelvin, which is too cool to excite any optical and UV CELs.
182 - N. C. Sterling 2007
We present results from the first large-scale survey of neutron(n)-capture element abundances in planetary nebulae (PNe). This survey was motivated by the fact that a PN may be enriched in n-capture elements if its progenitor star experienced s-process nucleosynthesis during the asymptotic giant branch (AGB) phase. [Kr III] 2.199 and/or [Se IV] 2.287 $mu$m were detected in 81 PNe out of 120 PNe, for a detection rate of nearly 70%. We derive Se and Kr abundances or upper limits using ionization correction factors derived from photoionization models. A significant range is found in the Se and Kr abundances, from near solar (no enrichment), to enriched by a factor of ten. Our survey has increased the number of PNe with known n-capture element abundances by an order of magnitude, enabling us to explore correlations between s-process enrichments and other nebular and central star properties. In particular, the Se and Kr enrichments display a positive correlation with nebular C/O ratios, as theoretically expected. Peimbert Type I PNe and bipolar PNe, whose progenitors are believed to be intermediate-mass stars (>3-4 M_sun), exhibit little or no s-process enrichment. Interestingly, PNe with H-deficient [WC] central stars do not exhibit systematically larger s-process enrichments than other PNe, despite the fact that their central stars are enriched in C and probably n-capture elements. Finally, the few PNe in our sample with known or probable binary central star systems exhibit little s-process enrichment, which may be explained if binary interactions truncated their AGB phases. We also briefly discuss a new observational program to detect optical emission lines of n-capture elements, and new atomic data calculations that will greatly improve the accuracy of n-capture element abundance determinations in PNe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا