Do you want to publish a course? Click here

Probing Turbulence in the Coma Galaxy Cluster

316   0   0.0 ( 0 )
 Added by Peter Schuecker
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spatially-resolved gas pressure maps of the Coma galaxy cluster are obtained from a mosaic of XMM-Newton observations in the scale range between a resolution of 20 kpc and an extent of 2.8 Mpc. A Fourier analysis of the data reveals the presence of a scale-invariant pressure fluctuation spectrum in the range between 40 and 90 kpc and is found to be well described by a projected Kolmogorov/Oboukhov-type turbulence spectrum. Deprojection and integration of the spectrum yields the lower limit of $sim 10$ percent of the total intracluster medium pressure in turbulent form. The results also provide observational constraints on the viscosity of the gas.



rate research

Read More

We have examined the orientations of early-type galaxies in the Coma cluster to see whether the well-established tendency for brightest cluster galaxies to share the same major axis orientation as their host cluster also extends to the rest of the galaxy population. We find no evidence of any preferential orientations of galaxies within Coma or its surroundings. The implications of this result for theories of the formation of clusters and galaxies (particularly the first-ranked members) are discussed.
138 - J. ZuHone 2015
Astro-H will be able for the first time to map gas velocities and detect turbulence in galaxy clusters. One of the best targets for turbulence studies is the Coma cluster, due to its proximity, absence of a cool core, and lack of a central active galactic nucleus. To determine what constraints Astro-H will be able to place on the Coma velocity field, we construct simulated maps of the projected gas velocity and compute the second-order structure function, an analog of the velocity power spectrum. We vary the injection scale, dissipation scale, slope, and normalization of the turbulent power spectrum, and apply measurement errors and finite sampling to the velocity field. We find that even with sparse coverage of the cluster, Astro-H will be able to measure the Mach number and the injection scale of the turbulent power spectrum--the quantities determining the energy flux down the turbulent cascade and the diffusion rate for everything that is advected by the gas (metals, cosmic rays, etc.). Astro-H will not be sensitive to the dissipation scale or the slope of the power spectrum in its inertial range, unless they are outside physically motivated intervals. We give the expected confidence intervals for the injection scale and the normalization of the power spectrum for a number of possible pointing configurations, combining the structure function and velocity dispersion data. Importantly, we also determine that measurement errors on the line shift will bias the velocity structure function upward, and show how to correct this bias.
As part of the HST/ACS Coma Cluster Treasury Survey, we have undertaken a Keck/LRIS spectroscopic campaign to determine membership for faint dwarf galaxies. In the process, we discovered a population of Ultra Compact Dwarf galaxies (UCDs) in the core region of the Coma cluster. At the distance of Coma, UCDs are expected to have angular sizes 0.01 < R_e < 0.2 arcsec. With ACS imaging, we can resolve all but the smallest ones with careful fitting. Candidate UCDs were chosen based on magnitude, color, and degree of resolution. We spectroscopically confirm 27 objects as bona fide UCD members of the Coma cluster, a 60% success rate for objects targeted with M_R < -12. We attribute the high success rate in part to the high resolution of HST data and to an apparent large population of UCDs in Coma. We find that the UCDs tend to be strongly clustered around giant galaxies, at least in the core region of the cluster, and have a distribution and colors that are similar to globular clusters. These findings suggest that UCDs are not independent galaxies, but rather have a star cluster origin. This current study provides the dense environment datapoint necessary for understanding the UCD population.
151 - J. Price , S. Phillipps , A. Huxor 2009
The HST ACS Coma Cluster Treasury Survey is a deep two passband imaging survey of the nearest very rich cluster of galaxies, covering a range of galaxy density environments. The imaging is complemented by a recent wide field redshift survey of the cluster conducted with Hectospec on the 6.5m MMT. Among the many scientific applications for this data are the search for compact galaxies. In this paper, we present the discovery of seven compact (but quite luminous) stellar systems, ranging from M32-like galaxies down to ultra-compact dwarfs (UCDs)/dwarf to globular transition objects (DGTOs). We find that all seven compact galaxies require a two-component fit to their light profile and have measured velocity dispersions that exceed those expected for typical early-type galaxies at their luminosity. From our structural parameter analysis we conclude that three of the sample should be classified as compact ellipticals or M32-like galaxies, the remaining four being less extreme systems. The three compact ellipticals are all found to have old luminosity weighted ages (> 12 Gyr), intermediate metallicities (-0.6 < [Fe/H] < -0.1) and high [Mg/Fe] (> 0.25). Our findings support a tidal stripping scenario as the formation mode of compact galaxies covering the luminosity range studied here. We speculate that at least two early-type morphologies may serve as the progenitor of compact galaxies in clusters.
Intracluster stellar populations are a natural result of tidal interactions in galaxy clusters. Measuring these populations is difficult, but important for understanding the assembly of the most massive galaxies. The Coma cluster is one of the nearest truly massive galaxy clusters, and is host to a correspondingly large system of globular clusters (GCs). We use imaging from the HST/ACS Coma Cluster Survey to present the first definitive detection of a large population of intracluster GCs (IGCs) that fills the Coma cluster core and is not associated with individual galaxies. The GC surface density profile around the central massive elliptical galaxy, NGC 4874, is dominated at large radii by a population of IGCs that extend to the limit of our data (R<520 kpc). We estimate that there are 47000+/-1600 (random) +4000/-5000 (systematic) IGCs out to this radius, and that they make up ~70% of the central GC system, making this the largest GC system in the nearby Universe. Even including the GC systems of other cluster galaxies, IGCs still make up ~30-45% of the GCs in the cluster core. Observational limits from previous studies of the intracluster light (ICL) suggest that the IGC population has a high specific frequency. If the IGC population has a specific frequency similar to high-S_N dwarf galaxies, then the ICL has a total stellar mass of ~10^12 M_sun within the cluster core. The ICL makes up approximately half of the stellar luminosity and one-third of the stellar mass of the central (NGC4874+ICL) system. The color distribution of the IGC population is bimodal, with blue, metal-poor GCs outnumbering red, metal-rich GCs by a ratio of 4:1. The fraction of red IGCs (20%), and the red color of those GCs, implies that IGCs can originate from the halos of relatively massive, L* galaxies, and not solely from the disruption of dwarf galaxies. (Abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا