No Arabic abstract
The aim of this article is to demonstrate the useful role that can be played by spectropolarimetric observations of young and evolved emission line stars that analyse the linearly polarized component in their spectra. At the time of writing, this demonstration has to be made on the basis of optical data since there is no common-user infrared facility, in operation, that offers the desired combination of spectral resolution and sensitivity. Here we focus on what can be learned from linear spectropolarimetry alone at reasonably high spectral resolution and at $10^3 < $S/N$ < 10^4$. And we remind that the near infrared (1--2 micron) has the potential to out-perform the optical as a domain to work in because of the greatly reduced interstellar obscuration at these wavelengths. This point has been reached at a time when theory, exploiting flexible Monte Carlo methods, is fast becoming a powerful tool. In short we have the complex phenomena, and the rise of the modelling capability to match -- good data are the missing link.
Accretion is the prime mode of star formation, but the exact mode has not yet been identified in the Herbig Ae/Be mass range. We provide evidence that the the maximum variation in mass-accretion rate is reached on a rotational timescale, which suggests that rotational modulation is the key to understanding mass accretion. We show how spectropolarimetry is uniquely capable of resolving the innermost (within 0.1 AU) regions between the star and the disk, allowing us to map the 3D geometry of the accreting gas, and test theories of angular momentum evolution. We present Monte Carlo line-emission simulations showing how one would observe changes in the polarisation properties on rotational timescales, as accretion columns come and go into our line of sight.
Linear spectropolarimetry is a powerful tool to probe circumstellar structures on spatial scales that cannot yet be achieved through direct imaging. In this review I discuss the role that emission-line polarimetry can play in constraining geometrical and physical properties of a wide range of circumstellar environments, varying from the accretion disks around pre-main sequence T Tauri and Herbig Ae/Be stars, to the issue of stellar wind clumping, and the aspherical outflows from the massive star progenitors of supernovae and long gamma-ray bursts at low metallicity.
We reduced ESOs archival linear spectropolarimetry data (4000-9000AA) of 6 highly polarized and 8 unpolarized standard stars observed between 2010 and 2016, for a total of 70 epochs, with the FOcal Reducer and low dispersion Spectrograph (FORS2) mounted at the Very Large Telescope. We provide very accurate standard stars polarization measurements as a function of wavelength, and test the performance of the spectropolarimetric mode (PMOS) of FORS2. We used the unpolarized stars to test the time stability of the PMOS mode, and found a small ($leq$0.1%), but statistically significant, on-axis instrumental polarization wavelength dependency, possibly caused by the tilted surfaces of the dispersive element. The polarization degree and angle are found to be stable at the level of $leq$0.1% and $leq$0.2 degrees, respectively. We derived the polarization wavelength dependence of the polarized standard stars and found that, in general, the results are consistent with those reported in the literature, e.g. Fossati et al. (2007) who performed a similar analysis using FORS1 data. The re-calibrated data provide a very accurate set of standards that can be very reliably used for technical and scientific purposes. The analysis of the Serkowski parameters revealed a systematic deviation from the width parameter $K$ reported by Whittet et al. (1992). This is most likely explained by incorrect effective wavelengths adopted in that study for the R and I bands.
Using the HiVIS spectropolarimeter built for the Haleakala 3.7m AEOS telescope, we have obtained a large number of high precision spectropolarimetrc observations (284) of Herbig AeBe stars collected over 53 nights totaling more than 300 hours of observing. Our sample of five HAeBe stars: AB Aurigae, MWC480, MWC120, MWC158 and HD58647, all show systematic variations in the linear polarization amplitude and direction as a function of time and wavelength near the H-alpha line. In all our stars, the H-alpha line profiles show evidence of an intervening disk or outflowing wind, evidenced by strong emission with an absorptive component. The linear polarization varies by 0.2% to 1.5% with the change typically centered in the absorptive part of the line profile. These observations are inconsistent with a simple disk-scattering model or a depolarization model which produce polarization changes centered on the emmissive core. We speculate that polarized absorption via optical pumping of the intervening gas may be the cause.
We present self-consistent models of gas in optically-thick dusty disks and calculate its thermal, density and chemical structure. The models focus on an accurate treatment of the upper layers where line emission originates, and at radii $gtrsim 0.7$ AU. We present results of disks around $sim 1{rm M}_{odot}$ stars where we have varied dust properties, X-ray luminosities and UV luminosities. We separately treat gas and dust thermal balance, and calculate line luminosities at infrared and sub-millimeter wavelengths from all transitions originating in the predominantly neutral gas that lies below the ionized surface of the disk. We find that the [ArII] 7$mu$m, [NeII] 12.8$mu$m, [FeI] 24$mu$m, [SI] 25$mu$m, [FeII] 26$mu$m, [SiII] 35 $mu$m, [OI] 63$mu$m and pure rotational lines of H$_2$, H$_2$O and CO can be quite strong and are good indicators of the presence and distribution of gas in disks. We apply our models to the disk around the nearby young star, TW Hya, and find good agreement between our model calculations and observations. We also predict strong emission lines from the TW Hya disk that are likely to be detected by future facilities. A comparison of CO observations with our models suggests that the gas disk around TW Hya may be truncated to $sim 120 $ AU, compared to its dust disk of 174 AU. We speculate that photoevaporation due to the strong stellar FUV field from TW Hya is responsible for the gas disk truncation.