Do you want to publish a course? Click here

Discovery of a Solitaire Dwarf Galaxy in the APPLES Survey

62   0   0.0 ( 0 )
 Added by Anna Pasquali
 Publication date 2004
  fields Physics
and research's language is English
 Authors A. Pasquali




Ask ChatGPT about the research

During the APPLES parallel campaign, the HST Advanced Camera for Surveys has resolved a distant stellar system, which appears to be an isolated dwarf galaxy. It is characterized by a circularly symmetric distribution of stars with an integrated magnitude m(F775W) = 20.13 +- 0.02, a central surface brightness of ~ 21.33 +- 0.18 mag/arcsec^2 and a half-light radius of ~ 1.8 arcsec. The ACS and VLT spectra show no evidence of ionized gas and appear dominated by a 3 Gyr old stellar population. The OB spectral type derived for two resolved stars in the grism data and the systemic radial velocity of ~ 670 km/s measured from the VLT data give a fiducial distance of ~ 9 +- 2 Mpc. These findings, with the support of the spatial morphology, would classify the system among the dwarf spheroidal (dSph) galaxies. Following the IAU rules, we have named this newly discovered galaxy APPLES 1. An intriguing peculiarity of APPLES 1 is that the properties (age and metallicity) of the stellar content so far detected are similar to those of dSph galaxies in the Local Group, where star formation is thought to be driven by galaxy interactions and mergers. Yet, APPLES 1 seems not to be associated with a major group or cluster of galaxies. Therefore, APPLES 1 could be the first example of a field dSph galaxy with self-sustained and regulated star formation and, therefore, would make an interesting test case for studies of the formation and evolution of unperturbed dSph galaxies.



rate research

Read More

155 - A. Gil de Paz 2003
We report the discovery of a double ring of emission-line regions around the nucleus of the Blue Compact Dwarf (BCD) galaxy Mrk409 as seen by deep, ground-based Halpha images. Echelle spectroscopy obtained at Magellan-I with MIKE shows the presence of ionized gas flowing out of the galaxy from a very massive (>7E6 Msun) nuclear starburst with projected expansion velocities of ~50 km/s. Different scenarios for the formation of these rings are discussed. While the innermost, nuclear ring is most probably formed by the interaction of a starburst-driven shock with the surrounding interstellar medium, the origin of the outer ring is less clear.
We discuss methodological issues related to the evaluation of unsupervised binary code construction methods for nearest neighbor search. These issues have been widely ignored in literature. These coding methods attempt to preserve either Euclidean distance or angular (cosine) distance in the binary embedding space. We explain why when comparing a method whose goal is preserving cosine similarity to one designed for preserving Euclidean distance, the original features should be normalized by mapping them to the unit hypersphere before learning the binary mapping functions. To compare a method whose goal is to preserves Euclidean distance to one that preserves cosine similarity, the original feature data must be mapped to a higher dimension by including a bias term in binary mapping functions. These conditions ensure the fair comparison between different binary code methods for the task of nearest neighbor search. Our experiments show under these conditions the very simple methods (e.g. LSH and ITQ) often outperform recent state-of-the-art methods (e.g. MDSH and OK-means).
Context. Globular clusters (GCs) are witnesses of the past accretion events onto the Milky Way (MW). In particular, the GCs of the Sagittarius (Sgr) dwarf galaxy are important probes of an on-going merger. Aims. Our main goal is to search for new GC members of this dwarf galaxy using the VISTA Variables in the Via Lactea Extended Survey (VVVX) near-infrared database combined with the Gaia Early Data Release 3 (EDR3) optical database. Methods. We investigated all VVVX-enabled discoveries of GC candidates in a region covering about 180 sq. deg. toward the bulge and the Sgr dwarf galaxy. We used multiband point-spread function photometry to obtain deep color-magnitude diagrams (CMDs) and luminosity functions (LFs) for all GC candidates, complemented by accurate Gaia-EDR3 proper motions (PMs) to select Sgr members and variability information to select RR Lyrae which are potential GC members. Results. After applying a strict PM cut to discard foreground bulge and disk stars, the CMDs and LFs for some of the GC candidates exhibit well defined red giant branches and red clump giant star peaks. We selected the best Sgr GCs, estimating their distances, reddenings, and associated RR Lyrae. Conclusions. We discover 12 new Sgr GC members, more than doubling the number of GCs known in this dwarf galaxy. In addition, there are 11 other GC candidates identified that are uncertain, awaiting better data for confirmation.
The Dwarf Galaxy Survey (DGS) program is studying low-metallicity galaxies using 230h of far-infrared (FIR) and submillimetre (submm) photometric and spectroscopic observations of the Herschel Space Observatory and draws to this a rich database of a wide range of wavelengths tracing the dust, gas and stars. This sample of 50 galaxies includes the largest metallicity range achievable in the local Universe including the lowest metallicity (Z) galaxies, 1/50 Zsun, and spans 4 orders of magnitude in star formation rates. The survey is designed to get a handle on the physics of the interstellar medium (ISM) of low metallicity dwarf galaxies, especially on their dust and gas properties and the ISM heating and cooling processes. The DGS produces PACS and SPIRE maps of low-metallicity galaxies observed at 70, 100, 160, 250, 350, and 500 mic with the highest sensitivity achievable to date in the FIR and submm. The FIR fine-structure lines, [CII] 158 mic, [OI] 63 mic, [OI] 145 mic, [OIII] 88 mic, [NIII] 57 mic and [NII] 122 and 205 mic have also been observed with the aim of studying the gas cooling in the neutral and ionized phases. The SPIRE FTS observations include many CO lines (J=4-3 to J=13-12), [NII] 205 mic and [CI] lines at 370 and 609 mic. This paper describes the sample selection and global properties of the galaxies, the observing strategy as well as the vast ancillary database available to complement the Herschel observations. The scientific potential of the full DGS survey is described with some example results included.
We announce the discovery of the Aquarius~2 dwarf galaxy, a new distant satellite of the Milky Way, detected on the fringes of the VST ATLAS and the SDSS surveys. The object was originally identified as an overdensity of Red Giant Branch stars, but chosen for subsequent follow-up based on the presence of a strong Blue Horizontal Branch, which was also used to measure its distance of $sim 110$ kpc. Using deeper imaging from the IMACS camera on the 6.5m Baade and spectroscopy with DEIMOS on Keck, we measured the satellites half-light radius $5.1pm 0.8$ arcmin, or $sim 160$ pc at this distance, and its stellar velocity dispersion of $5.4^{+3.4}_{-0.9}$ km s$^{-1}$. With $mu=30.2$ mag arcsec$^{-2}$ and $M_V=-4.36$, the new satellite lies close to two important detection limits: one in surface brightness; and one in luminosity at a given distance, thereby making Aquarius~2 one of the hardest dwarfs to find.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا