No Arabic abstract
We propose a new method of estimation of the black hole masses in AGN based on the normalized excess variance, sigma_{nxs}^2. We derive a relation between sigma_{nxs}^2, the length of the observation, T, the light curve bin size, Delta t, and the black hole mass, assuming that (i) the power spectrum above the high frequency break, f_{bf}, has a slope of -2, (ii) the high frequency break scales with black hole mass, (iii) the power spectrum amplitude (in frequency x power space) is universal and (iv) sigma_{nxs}^2 is calculated from observations of length T < 1/f_{bf}. Values of black hole masses in AGN obtained with this method are consistent with estimates based on other techniques such as reverberation mapping or the Mbh-stellar velocity dispersion relation. The method is formally equivalent to methods based on power spectrum scaling with mass but the use of the normalized excess variance has the big advantage of being applicable to relatively low quality data.
The relation between the 2-10 keV, long term, excess variance and AGN black hole mass is considered in this work. A significant anti-correlation is found between these two quantities in the sense that the excess variance decreases with increasing black hole mass. This anti-correlation is consistent with the hypothesis that the 2-10 keV power spectrum in AGN follows a power law of slope -2 at high frequencies. It then flattens to a slope of -1 below a break frequency until a second break frequency below which it flattens to a slope of zero. The ratio of the two break frequencies is equal to 10-30, similar to the ratio of the respective frequencies in Cyg X-1. The power spectrum amplitude in the frequency x power space does not depend on black hole mass. Instead it is roughly equal to 0.02 in all objects. The high frequency break decreases with increasing black hole mass according to the relation 1.5x(10^-6)/(BHmass/(10^7) solar masses) Hz, in the case of classical Seyfert 1 galaxies. The excess variance of NGC4051, a Narrow Line Seyfert 1 object, is larger than what is expected for its black hole mass and X-ray luminosity. This can be explained if its high frequency break is 20 times larger than the value expected in the case of a classical Seyfert 1 with the same black hole mass. Finally, the excess variance vs X-ray luminosity correlation is a byproduct of the excess variance vs black hole mass correlation, with AGN accreting at ~ 0.1-0.15 the Eddington limit. These results are consistent with recent results from the power spectral analysis of AGN.
Several investigations of the X-ray variability of active galactic nuclei (AGN) using the normalised excess variance (${sigma^2_{rm NXS}}$) parameter have shown that variability has a strong anti-correlation with black hole mass ($M_{rm BH}$) and X-ray luminosity ($L_{rm X}$). In this study we confirm these previous correlations and find no evidence of a redshift evolution. Using observations from XMM-Newton, we determine the ${sigma^2_{rm NXS}}$ and $L_{rm X}$ for a sample of 1091 AGN drawn from the XMM-Newton Cluster Survey (XCS) - making this the largest study of X-ray spectral properties of AGNs. We created light-curves in three time-scales; 10 ks, 20 ks and 40 ks and used these to derive scaling relations between ${sigma^2_{rm NXS}}$, $L_{rm X}$ (2.0-10 keV range) and literature estimates of $M_{rm BH}$ from reverberation mapping. We confirm the anti-correlation between $M_{rm BH}$ and ${sigma^2_{rm NXS}}$ and find a positive correlation between $M_{rm BH}$ and $L_{rm X}$. The use of ${sigma^2_{rm NXS}}$ is practical only for pointed observations where the observation time is tens of kiloseconds. For much shorter observations one cannot accurately quantify variability to estimate $M_{rm BH}$. Here we describe a method to derive $L_{rm X}$ from short duration observations and used these results as an estimate for $M_{rm BH}$. We find that it is possible to estimate $L_{rm X}$ from observations of just a few hundred seconds and that when correlated with $M_{rm BH}$, the relation is statistically similar to the relation of $M_{rm BH}$-$L_{rm X}$ derived from a spectroscopic analysis of full XMM observations. This method may be particularly useful to the eROSITA mission, an all-sky survey, which will detect $>$10$^{6}$ AGN.
We present a new method for supermassive black hole (SMBH) mass measurements in Type 1 active galactic nuclei (AGN) using polarization angle across broad lines. This method gives measured masses which are in a good agreement with reverberation estimates. Additionally, we explore the possibilities and limits of this method using the STOKES radiative transfer code taking a dominant Keplerian motion in the broad line region (BLR). We found that this method can be used for the direct SMBH mass estimation in the cases when in addition to the Kepler motion, radial inflows or vertical outflows are present in the BLR. Some advantages of the method are discussed.
As a newly discovered class of radio-loud active galactic nuclei (AGNs), the gamma-ray detected narrow-line Seyfert 1 galaxies (NLS1s) launch powerful jets which are generally found only in blazars and radio galaxies. However, their black hole (BH) masses as estimated from the broad emission lines are one order of magnitude or more lower than those in blazars. This brings new challenges for explaining the radio loudness triggering in AGNs. It is still under debate whether their BH masses from the commonly used virial method are underestimated. Here we present an estimate of the BH mass for the gamma-ray detected NLS1 1H 0323+342, an archetype of this class, from the X-ray variability which is inclination independent. Our results independently confirm that this gamma-ray detected NLS1 harbors a $(2.8-7.9)times10^6,M_{odot}$ BH similar to those in normal NLS1s rather than those in blazars.
A calibration is made for the correlation between the X-ray Variability Amplitude (XVA) and Black Hole (BH) mass. The correlation for 21 reverberation-mapped Active Galactic Nuclei (AGN) appears very tight, with an intrinsic dispersion of 0.20 dex. The intrinsic dispersion of 0.27 dex can be obtained if BH masses are estimated from the stellar velocity dispersions. We further test the uncertainties of mass estimates from XVAs for objects which have been observed multiple times with good enough data quality. The results show that the XVAs derived from multiple observations change by a factor of 3. This means that BH mass uncertainty from a single observation is slightly worse than either reverberation-mapping or stellar velocity dispersion measurements; however BH mass estimates with X-ray data only can be more accurate if the mean XVA value from more observations is used. Applying this relation, the BH mass of RE J1034+396 is found to be $4^{+3}_{-2} times 10^6$ $M_{odot}$. The high end of the mass range follows the relationship between the 2$f_0$ frequencies of high-frequency QPO and the BH masses derived from the Galactic X-ray binaries. We also calculate the high-frequency constant $C= 2.37 M_odot$ Hz$^{-1}$ from 21 reverberation-mapped AGN. As suggested by Gierlinski et al., $M_{rm BH}=C/C_{rm M}$, where $C_{rm M}$ is the high-frequency variability derived from XVA. Given the similar shape of power-law dominated X-ray spectra in ULXs and AGN, this can be applied to BH mass estimates of ULXs. We discuss the observed QPO frequencies and BH mass estimates in the Ultra-Luminous X-ray source M82 X-1 and NGC 5408 X-1 and favor ULXs as intermediate mass BH systems (abridged).