Do you want to publish a course? Click here

The nature of the mid-infrared population from optical identifications of the ELAIS-S1 sample

78   0   0.0 ( 0 )
 Added by Fabio La Franca
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a multi-wavelength catalog (15 um, R, K-band, 1.4 GHz flux) plus spectroscopic identifications for 406 15 um sources detected in the ELAIS region S1, over the flux density range 0.5<S<150 mJy. 332 (~82%) sources are optically identified down to R~23.0. Spectra or bona fide stellar identifications are obtained for 290 objects. The areal coverage, MIR and optical completeness of the sample are discussed in order to allow statistical and evolutionary analyses. Two main spectroscopic classes have been found to dominate the MIR extragalactic population: z<0.5 star-forming galaxies (from absorbed to extreme starbursts: nuL_nu~10^8-10^11 L_odot), which account for ~75% of the sources, and AGN (both type 1 and 2), which account for ~25% of the sources. About 20% of the extragalactic sources are dust-enshrouded starburst galaxies [e(a) spectra], and all the starburst galaxies appear more dust extincted in the optical than nearby normal galaxies. We also identified 91 stellar objects (~22% of the MIR sources). The counts for starburst galaxies and AGN down to 0.6 mJy have been derived. A general trend is found in the optical-MIR SED of the galaxies, where the MIR-luminous objects have larger MIR to optical luminosity ratios.

rate research

Read More

We present optical identifications and a multi-band catalogue of a sample of 478 X-ray sources in the XMM and Chandra surveys of the central 0.6 deg^2 of the ELAIS-S1 field. The optical/infrared counterpart of each X-ray source was identified using R and IRAC 3.6 um bands. This method was complemented by the precise positions obtained through Chandra observations. Approximately 94% of the counterparts are detected in the R band, while the remaining are blank fields in the optical down to R~24.5, but have a near-infrared counterpart detected by IRAC within 6 arcsec from the XMM centroid. The multi-band catalogue contains photometry in ten photometric bands (B to the MIPS 24 um). We determined redshift and classification for 237 sources (~50% of the sample) brighter than R=24. We classified 47% of the sources with spectroscopic redshift as broad-line active galactic nuclei (BL AGNs) with z=0.1-3.5, while sources without broad-lines are about 46% of the spectroscopic sample and are found up to z=2.6. We identified 11 type 2 QSOs among the sources with X/O>8, with z=0.9-2.6, high 2-10 keV luminosity (log(L2-10keV)>=43.8 erg/s) and hard X-ray colors suggesting large absorbing columns at the rest frame (logN_H up to 23.6 cm^-2). BL AGNs show on average blue optical-to-near-infrared colors, softer X-ray colors and X-ray-to-optical colors typical of optically selected AGNs. Conversely, narrow-line sources show redder optical colors, harder X-ray flux ratio and span a wider range of X-ray-to-optical colors. On average the SEDs of high-luminosity BL AGNs resemble the power-law typical of unobscured AGNs. The SEDs of NOT BL AGNs are dominated by the galaxy emission in the optical/near-infrared, and show a rise in the mid-infrared which suggests the presence of an obscured active nucleus.
73 - F. La Franca 2007
Context: The counts of galaxies and AGN in the mid infra-red (MIR) bands are important instruments for studying their cosmological evolution. However, the classic spectral line ratios techniques can become misleading when trying to properly separate AGN from starbursts or even from apparently normal galaxies. Aims: We use X-ray band observations to discriminate AGN activity in previously classified MIR-selected starburst galaxies and to derive updated AGN1 and (Compton thin) AGN2 counts at 15 um. Methods: XMM observations of the ELAIS-S1 15um sample down to flux limits ~2x10^-15 erg cm^-2 s^-1 (2-10 keV band) were used. We classified as AGN all those MIR sources with a unabsorbed 2-10 keV X-ray luminosity higher that ~10^42 erg/s. Results: We find that at least about 13(+/-6) per cent of the previously classified starburst galaxies harbor an AGN. According to these figures, we provide an updated estimate of the counts of AGN1 and (Compton thin) AGN2 at 15 um. It turns out that at least 24% of the extragalactic sources brighter than 0.6 my at 15 um are AGN (~13% contribution to the extragalactic background produced at fluxes brighter than 0.6 mJy).
85 - C. Vignali 2007
Over the last few years, optical, mid-infrared and X-ray surveys have brought to light a significant number of candidate obscured AGN and, among them, many Type 2 quasars, the long-sought after big cousins of local Seyfert 2 galaxies. However, despite the large amount of multi-wavelength data currently available, a proper census and a panchromatic view of the obscured AGN/quasar population are still missing, mainly due to observational limitations. Here we provide a review of recent results on the identification of obscured AGN, focusing primarily on the population of Type 2 quasars selected in the optical band from the Sloan Digital Sky Survey.
404 - E. Lenc , R. Norris , C. Hales 2009
The first phase of the ATLAS (Australia Telescope Large Area Survey) project surveyed a total 7 square degrees down to 30 micro Jy rms at 1.4 GHz and is the largest sensitive radio survey ever attempted. We report on the scientific achievements of ATLAS to date and plans to extend the project as a path finder for the proposed EMU (Evolutionary map of the Universe) project which has been designed to use ASKAP (Australian Square Kilometre Array Pathfinder).
We have conducted sensitive (1 sigma<30 uJy) 1.4 GHz radio observations with the Australia Telescope Compact Array of a field largely coincident with infrared observations of the Spitzer Wide-Area Extragalactic Survey. The field is centred on the European Large Area ISO Survey S1 region and has a total area of 3.9 deg. We describe the observations and calibration, source extraction, and cross-matching to infrared sources. Two catalogues are presented; one of the radio components found in the image and one of radio sources with counterparts in the infrared and extracted from the literature. 1366 radio components were grouped into 1276 sources, 1183 of which were matched to infrared sources. We discover 31 radio sources with no infrared counterpart at all, adding to the class of Infrared-Faint Radio Sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا