We report on the design, first observing season, and analysis of data from a new prototype millimeter-wave interferometer, MINT. MINT consists of four 145 GHz SIS mixers operating in double-sideband mode in a compact heterogeneous configuration. The signal band is subdivided by a monolithic channelizer, after which the correlations between antennas are performed digitally. The typical receiver sensitivity in a 2 GHz band is 1.4 mK sqrt(s). MINT observed the cosmic microwave background (CMB) from the Chilean Altiplano. The site has a median nighttime atmospheric temperature of 9 K at zenith (exclusive of the CMB). Observations of Mars, Jupiter, and a telescope-mounted calibration source establish the systems phase and magnitude stability. MINT is the first CMB-dedicated interferometer to operate above 50 GHz. The same type of system can be used to probe the Sunyaev-Zeldovich effect in galaxy clusters near the SZ null at 217 GHz. We present an analysis of sideband-separated, digitally sampled data recorded by the array. Based on 215 hours of data taken in late 2001, we set an upper limit on the CMB anisotropy in a band of width Delta ell=700 around ell=1540 of delta T < 105 microK (95% conf). Increased sensitivity can be achieved with more integration time, greater bandwidth, and more elements.