No Arabic abstract
We present the results of a wide-area mapping of the far-infrared continuum emission toward the Orion complex by using a Japanese balloon-borne telescope. The 155-um continuum emission was detected over a region of 1.5 deg^2 around the KL nebula with 3 resolution similar to that of the IRAS 100-um map. Assuming a single-temperature model of the thermal equilibrium dust, maps of the temperature and the optical depth were derived from the 155 um intensity and the IRAS 100 um intensity. The derived dust temperature is 5 - 15 K lower and the derived dust optical thickness were derived from the 155-um intensity and the IRAS 100-um intensity. The derived dust temperature is 5 - 15 K lower and the derived dust optical depth is 5 - 300 times larger than those derived from the IRAS 60 and 100-um intensities due to the significant contribution of the statistically heated very small grains to the IRAS 60-um intensity. The optical-thickness distribution shows a filamentary dust ridge that has a 1.5 degrees extent in the north - south direction and well resembles the Integral-Shaped Filament (ISF) molecular gas distribution. The gas-to-dust ratio derived from the CO molecular gas distribution along the ISF is in the range 30 - 200, which may be interpreted as being an effect of CO depletion due to the photodissociation and/or the freezing on dust grains.
Observations towards L1630 in the Orion B molecular cloud, comprising the iconic Horsehead Nebula, allow us to study the interplay between stellar radiation and a molecular cloud under relatively benign conditions, that is, intermediate densities and an intermediate UV radiation field. Contrary to the well-studied Orion Molecular Cloud 1 (OMC1), which hosts much harsher conditions, L1630 has little star formation. We aim to relate the [CII] fine-structure line emission to the physical conditions predominant in L1630 and compare it to studies of OMC1. The [CII] $158,mumathrm{m}$ emission from an area of $12 times 17$ in L1630 was observed using the upGREAT instrument onboard SOFIA. Of the [CII] emission from the mapped area 95%, $13,L_{odot}$, originates from the molecular cloud; the adjacent HII region contributes only 5%, that is, $1,L_{odot}$. From comparison with other data (CO (1-0)-line emission, far-infrared (FIR) continuum studies, emission from polycyclic aromatic hydrocarbons (PAHs)), we infer a gas density of the molecular cloud of $n_{mathrm{H}}sim 3cdot 10^3,mathrm{cm^{-3}}$, with surface layers, including the Horsehead Nebula, having a density of up to $n_{mathrm{H}}sim 4cdot 10^4,mathrm{cm^{-3}}$. The temperature of the surface gas is $Tsim 100,mathrm{K}$. The average [CII] cooling efficiency within the molecular cloud is $1.3cdot 10^{-2}$. The fraction of the mass of the molecular cloud within the studied area that is traced by [CII] is only $8%$. Our PDR models are able to reproduce the FIR-[CII] correlations and also the CO (1-0)-[CII] correlations. Finally, we compare our results on the heating efficiency of the gas with theoretical studies of photoelectric heating by PAHs, clusters of PAHs, and very small grains, and find the heating efficiency to be lower than theoretically predicted, a continuation of the trend set by other observations.
We present the first results of an observational programme undertaken to map the fine structure line emission of singly ionized carbon ([CII] 157.7409 micron) over extended regions using a Fabry Perot spectrometer newly installed at the focal plane of a 100cm balloon-borne far-infrared telescope. This new combination of instruments has a velocity resolution of ~200 km/s and an angular resolution of 1.5. During the first flight, an area of 30x15 in Orion A was mapped. The observed [CII] intensity distribution has been compared with the velocity-integrated intensity distributions of 13CO(1-0), CI(1-0) and CO(3-2) from the literature. The observed line intensities and ratios have been analyzed using the PDR models by Kaufman et al. 1999 to derive the incident UV flux and volume density at a few selected positions.
We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest-southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au times 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelength. The flux density can be well fitted to the optically thick black-body spectral energy distribution (SED), and the brightness temperature is evaluated to be 700-800 K. It is much lower than that in the case of proton-electron or H- free-free radiations. Our data are consistent with the latest ALMA results by Plambeck & Wright (2016), in which the continuum emission have been proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with the smaller beam filling factor.
Context. The [CII] 158micron far-infrared fine-structure line is one of the dominant cooling lines of the star-forming interstellar medium (ISM). Hence [CII] emission originates in and thus can be used to trace a range of ISM processes. Velocity-resolved large-scale mapping of [CII] in star-forming regions provides a unique perspective of the kinematics of these regions and their interactions with the exciting source of radiation. Aims. We explore the scientific applications of large-scale mapping of velocity-resolved [CII] observations. With the [CII] observations, we investigate the effect of stellar feedback on the ISM. We present the details of observation, calibration, and data reduction using a heterodyne array receiver mounted on an airborne observatory. Results. A square-degree [CII] map with a spectral resolution of 0.3 km/s is presented. The scientific potential of this data is summarized with discussion of mechanical and radiative stellar feedback, filament tracing using [CII], [CII] opacity effects, [CII] and carbon recombination lines, and [CII] interaction with the large molecular cloud. The data quality and calibration is discussed in detail, and new techniques are presented to mitigate the effects of unavoidable instrument deficiencies (e.g. baseline stability) and thus to improve the data quality. A comparison with a smaller [CII] map taken with the Herschel/Heterodyne Instrument for the Far-Infrared (HIFI) spectrometer is presented.
We have mapped the Orion-A Giant Molecular Cloud in the CO (J=4-3) line with the Tsukuba 30-cm submillimeter telescope.The map covered a 7.125 deg^2 area with a 9 resolution, including main components of the cloud such as Orion Nebula, OMC-2/3, and L1641-N. The most intense emission was detected toward the Orion KL region. The integrated intensity ratio between CO (J=4-3) and CO (J=1-0) was derived using data from the Columbia-Univ. de Chile CO survey, which was carried out with a comparable angular resolution. The ratio was r_{4-3/1-0} ~ 0.2 in the southern region of the cloud and 0.4-0.8 at star forming regions. We found a trend that the ratio shows higher value at edges of the cloud. In particular the ratio at the north-eastern edge of the cloud at (l, b) = (208.375 deg, -19.0 deg) shows the specific highest value of 1.1. The physical condition of the molecular gas in the cloud was estimated by non-LTE calculation. The result indicates that the kinetic temperature has a gradient from north (Tkin=80 K) to south (20 K). The estimation shows that the gas associated with the edge of the cloud is warm (Tkin~60 K), dense (n_{H_2}~10^4 cm^{-3}), and optically thin, which may be explained by heating and sweeping of interstellar materials from OB clusters.