Do you want to publish a course? Click here

High Resolution X-ray Spectroscopy of the Post-T Tauri Star PZ Tel

60   0   0.0 ( 0 )
 Added by Costanza Argiroffi
 Publication date 2004
  fields Physics
and research's language is English
 Authors C. Argiroffi




Ask ChatGPT about the research

We present an analysis of the Chandra High Energy Transmission Grating Spectrometer observation of the rapidly rotating P_(rot)=0.94 d post T Tauri (~20 Myr old) star PZ Telescopii, in the Tucana association. Using two different methods we have derived the coronal emission measure distribution, em(T), and chemical abundances. The em(T) peaks at log T = 6.9 and exhibits a significant emission measure at temperatures log T > 7. The coronal abundances are generally ~0.5 times the solar photospheric values that are presumed fairly representative of the composition of the underlying star. A minimum in abundance is seen at a first ionization potential (FIP) of 7-8 eV, with evidence for higher abundances at both lower and higher FIP, similar to patterns seen in other active stars. From an analysis of the He-like triplet of Mg XI we have estimated electron densities of ~10^(12)-10^(13) cm^(-3). All the coronal properties found for PZ Tel are much more similar to those of AB Dor, which is slightly older than PZ Tel, than to those of the younger T Tauri star TW Hya. These results support earlier conclusions that the soft X-ray emission of TW Hya is likely dominated by accretion activity rather than by a magnetically-heated corona. Our results also suggest that the coronae of pre-main sequence stars rapidly become similar to those of older active main-sequence stars soon after the accretion stage has ended.



rate research

Read More

134 - C. Argiroffi 2004
We report on the analysis of high resolution X-ray spectra of two pre-main-sequence stars: TWA 5 (observed with XMM-Newton) and PZ Telescopii (observed with Chandra/HETGS). TWA 5 is a classical T Tauri star in the TW Hydrae association while PZ Tel is a rapidly rotating weak-lined T Tauri star in the beta-Pictoris moving group. For both stars we have reconstructed the emission measure distribution and derived the coronal abundances to check for possible patterns of the abundances related to the first ionization potential of the various elements. We have also derived estimates of the plasma density from the analysis of the He-like triplets. We compare the characteristics of our targets with those of other pre-main sequence stars previously analyzed by other authors: TW Hya, HD 98800 and HD 283572. Our findings suggest that X-ray emission from classical T Tauri and weak-lined T Tauri stars is produced in all cases by magnetically-heated coronae, except for TW Hya which has unique plasma temperatures and densities. Moreover we derive that TWA 5 has the same peculiar Ne/Fe abundance ratio as TW Hya.
We present high-resolution X-ray spectra of the multiple T Tauri star system Hen 3-600, obtained with the High Energy Transmission Grating Spectrograph on the Chandra X-ray Observatory. Two binary components were detected in the zeroth-order image. Hen 3-600-A, which has a large mid-infrared excess, is a 2-3 times fainter in X-rays than Hen 3-600-B, due to a large flare on B. The dispersed X-ray spectra of the two primary components overlap spatially; spectral analysis was performed on the combined system. Analysis of the individual spectra was limited to regions where the contributions of A and B can be disentangled. This analysis results in two lines of evidence indicating that the X-ray emission from Hen 3-600 is derived from accretion processes: line ratios of O VII indicate that the characteristic density of its X-ray-emitting plasma is large; a significant component of low-temperature plasma is present and is stronger in component A. These results are consistent with results obtained from X-ray gratings spectroscopy of more rapidly accreting systems. All of the signatures of Hen 3-600 that are potential diagnostics of accretion activity -- X-ray emission, UV excess, H-alpha emission, and weak infrared excess -- suggest that its components represent a transition phase between rapidly accreting, classical T Tauri stars and non-accreting, weak-lined T Tauri stars.
Analysis of the surface composition of the suspected cool RV Tauri star CE Vir shows no systematic trend in depletions of elements with respect to condensation temperature. However, there is a significant depletion of the elements with respect to the first ionization potential of the element. The derived Li abundance of log $epsilon$ (Li) = 1.5$pm$0.2 indicates production of Li in the star. Near infrared colours indicate sporadic dust formation close to the photosphere.
We aim to characterise the surface magnetic fields of a sample of 8 T Tauri stars from high-resolution near-IR spectroscopy. Some stars in our sample are known to be magnetic from previous spectroscopic or spectropolarimetric studies. Our goals are 1) to apply Zeeman broadening modelling to T Tauri stars with high-resolution data, 2) to expand the sample of stars with measured surface magnetic field strengths, 3) to investigate possible rotational or long-term magnetic variability by comparing spectral time series of given targets, and 4) to compare the magnetic field modulus <B> tracing small-scale magnetic fields to those of large-scale magnetic fields derived by Stokes V Zeeman Doppler Imaging. We modelled the Zeeman broadening of magnetically sensitive spectral lines in the near-IR K-band from high-resolution spectra by using magnetic spectrum synthesis based on realistic model atmospheres and by using different descriptions of the surface magnetic field. We developped a Bayesian framework that selects the complexity of the magnetic field prescription based on the information contained in the data. We obtain individual magnetic field measurements for each star in our sample using four different models. We find that the Bayesian Model 4 performs best in the range of magnetic fields measured on the sample (from 1.5 kG to 4.4 kG). We do not detect a strong rotational variation of <B> with a mean peak-to-peak variation of 0.3 kG. Our confidence intervals are of the same order of magnitude, which suggests that the Zeeman broadening is produced by a small-scale magnetic field homogeneously distributed over stellar surfaces. A comparison of our results with mean large-scale magnetic field measurements from Stokes V ZDI show different fractions of mean field strength being recovered, from 25-42% for relatively simple poloidal axisymmetric field topologies to 2-11% for more complex fields.
74 - J.S. Kaastra 2016
Since the launch of Chandra and XMM-Newton, high-resolution X-ray spectra of cosmic sources of all kinds have become available. These spectra have resulted in major scientific breakthroughs. However, due to the techniques used, in general high-quality spectra can only be obtained for the brightest few sources of each class. Moreover, except for the most compact extended sources, like cool core clusters, grating spectra are limited to point sources. Hitomi made another major step forward, in yielding for the first time a high-quality spectrum of an extended source, and improved spectral sensitivity in the Fe-K band. For point sources with the proposed Arcus mission, and for all sources with the launch of Athena, X-ray spectroscopy will become mature. It allows us to extend the investigations from the few handful of brightest sources of each category to a large number of sources far away in space and time, or to get high time-resolution, high-spectral resolution spectra of bright time variable sources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا