No Arabic abstract
The B modes generated by the lensing of CMB polarization are a primary target for the upcoming generation of experiments and can potentially constrain quantities such as the neutrino mass and dark energy equation of state. The net sample variance on the small scale B modes out to l=2000 exceeds Gaussian expectations by a factor of 10 reflecting the variance of the larger scale lenses that generate them. It manifests itself as highly correlated band powers with correlation coefficients approaching 70% for wide bands of Delta l/l ~0.25. It will double the total variance for experiments that achieve a sensitivity of approximately 4 uK-arcmin and a beam of several arcminutes or better. This non-Gaussianity must be taken into account in the analysis of experiments that go beyond first detection.
A stochastic gravitational wave background (SGWB) will affect the CMB anisotropies via weak lensing. Unlike weak lensing due to large scale structure which only deflects photon trajectories, a SGWB has an additional effect of rotating the polarization vector along the trajectory. We study the relative importance of these two effects, deflection & rotation, specifically in the context of E-mode to B-mode power transfer caused by weak lensing due to SGWB. Using weak lensing distortion of the CMB as a probe, we derive constraints on the spectral energy density ($Omega_{GW}$) of the SGWB, sourced at different redshifts, without assuming any particular model for its origin. We present these bounds on $Omega_{GW}$ for different power-law models characterizing the SGWB, indicating the threshold above which observable imprints of SGWB must be present in CMB.
The weak lensing power spectrum carries cosmological information via its dependence on the growth of structure and on geometric factors. Since much of the cosmological information comes from scales affected by nonlinear clustering, measurements of the lensing power spectrum can be degraded by non-Gaussian covariances. Recently there have been conflicting studies about the level of this degradation. We use the halo model to estimate it and include new contributions related to the finite size of lensing surveys, following Rimes and Hamiltons study of 3D simulations. We find that non-Gaussian correlations between different multipoles can degrade the cumulative signal-to-noise for the power spectrum amplitude by up to a factor of 2 (or 5 for a worst-case model that exceeds current N-body simulation predictions). However, using an eight-parameter Fisher analysis we find that the marginalized errors on individual parameters are degraded by less than 10% (or 20% for the worst-case model). The smaller degradation in parameter accuracy is primarily because: individual parameters in a high-dimensional parameter space are degraded much less than the volume of the full Fisher ellipsoid; lensing involves projections along the line of sight, which reduce the non-Gaussian effect; some of the cosmological information comes from geometric factors which are not degraded at all. We contrast our findings with those of Lee & Pen (2008) who suggested a much larger degradation in information content. Finally, our results give a useful guide for exploring survey design by giving the cosmological information returns for varying survey area, depth and the level of some systematic errors.
This article derives a multipolar hierarchy for the propagation of the weak-lensing shear and convergence in a general spacetime. The origin of B-modes, in particular on large angular scales, is related to the local isotropy of space. Known results assuming a Friedmann-Lema^itre background are naturally recovered. The example of a Bianchi I spacetime illustrates our formalism and its implications for future observations are stressed.
Detailed measurements of the CMB lensing signal are an important scientific goal of ongoing ground-based CMB polarization experiments, which are mapping the CMB at high resolution over small patches of the sky. In this work we simulate CMB polarization lensing reconstruction for the $EE$ and $EB$ quadratic estimators with current-generation noise levels and resolution, and show that without boundary effects the known and expected zeroth and first order $N^{(0)}$ and $N^{(1)}$ biases provide an adequate model for non-signal contributions to the lensing power spectrum estimators. Small sky areas present a number of additional challenges for polarization lensing reconstruction, including leakage of $E$ modes into $B$ modes. We show how simple windowed estimators using filtered pure-$B$ modes can greatly reduce the mask-induced mean-field lensing signal and reduce variance in the estimators. This provides a simple method (used with recent observations) that gives an alternative to more optimal but expensive inverse-variance filtering.
Weak lensing is emerging as a powerful observational tool to constrain cosmological models, but is at present limited by an incomplete understanding of many sources of systematic error. Many of these errors are multiplicative and depend on the population of background galaxies. We show how the commonly cited geometric test, which is rather insensitive to cosmology, can be used as a ratio test of systematics in the lensing signal at the 1 per cent level. We apply this test to the galaxy-galaxy lensing analysis of the Sloan Digital Sky Survey (SDSS), which at present is the sample with the highest weak lensing signal to noise and has the additional advantage of spectroscopic redshifts for lenses. This allows one to perform meaningful geometric tests of systematics for different subsamples of galaxies at different mean redshifts, such as brighter galaxies, fainter galaxies and high-redshift luminous red galaxies, both with and without photometric redshift estimates. We use overlapping objects between SDSS and the DEEP2 and 2SLAQ spectroscopic surveys to establish accurate calibration of photometric redshifts and to determine the redshift distributions for SDSS. We use these redshift results to compute the projected surface density contrast DeltaSigma around 259 609 spectroscopic galaxies in the SDSS; by measuring DeltaSigma with different source samples we establish consistency of the results at the 10 per cent level (1-sigma). We also use the ratio test to constrain shear calibration biases and other systematics in the SDSS survey data to determine the overall galaxy-galaxy weak lensing signal calibration uncertainty. We find no evidence of any inconsistency among many subsamples of the data.