Do you want to publish a course? Click here

The IC2118 association: new T Tauri stars in high-latitude molecular clouds

365   0   0.0 ( 0 )
 Added by Maria Kun
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We identified new pre-main sequence stars in the region of high-latitude molecular clouds associated with the reflection nebula IC2118, around l = 208 degr and b = -27 degr. The stars were selected as T Tauri candidates in objective prism plates obtained with the Schmidt telescope of Konkoly Observatory. Results of spectroscopic follow-up observations, carried out with the FLAIR spectrograph installed on the UK Schmidt and with ALFOSC on Nordic Optical Telescope, are presented in this paper. Based on spectral types, presence of emission lines and lithium absorption line, we identified five classical T Tauri stars and a candidate weak-line T Tauri star projected on the molecular clouds, as well as two candidate pre-main sequence stars outside the nebulous region. Using the near infrared magnitudes obtained from the 2MASS All Sky Catalog. we determined the masses and ages of these stars. We found that the five classical T Tauri stars projected on the clouds are physically related to them, whereas the other stars are probably background objects. Adopting a distance of 210 pc for IC2118 (Kun et al. 2001) and using Palla & Stahlers (1999) evolutionary tracks we derived an average age of 2.5 million yrs and a mass interval of 0.4--1.0 M_sun for the members of the IC2118 association.



rate research

Read More

In this chapter we review the young stars and molecular clouds found at high Galactic latitudes $(|b| ge 30^circ)$. These are mostly associated with two large-scale structures on the sky, the Gould Belt and the Taurus star formation region, and a handful of molecular clouds including MBM 12 and MBM 20 which, as a population, consist of the nearest star formation sites to our Sun. There are also a few young stars that are found in apparent isolation far from any molecular cloud. The high latitude clouds are primarily translucent molecular clouds and diffuse Galactic cirrus with the majority of them seen at high latitude simply due to their proximity to the Sun. The rare exceptions are those, like the Draco and other intermediate or high velocity clouds, found significantly above or below the Galactic plane. We review the processes that result in star formation within these low density and extraplanar environments as well as the mechanisms for production of isolated T Tauri stars. We present and discuss the known high-latitude stellar nurseries and young stellar objects.
We present a detailed analysis of narrow of NaI and KI absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The NaI 5889.95 angstrom line is detected toward all but one source, while the weaker KI 7698.96 angstrom line in about two thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present towards both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of NaI and CO detections and peak centroids demonstrates that the atomic and molecular gas are not co-located, the atomic gas is more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of NaI radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation while the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow NaI and KI absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud-cloud interactions.
Based on the accurate color excess $E_{rm G_{BP},G_{RP}}$ of more than 4 million stars and $E_{rm NUV,G_{BP}}$ of more than 1 million stars from citet{2021ApJS..254...38S}, the distance and the extinction of the molecular clouds in the MBM catalog at $|b|>20^{circ}$ are studied in combination with the distance measurement of emph{Gaia}/EDR3. The distance as well as the color excess is determined for 66 molecular clouds. The color excess ratio $E_{rm G_{BP},G_{RP}}/E_{rm NUV,G_{BP}}$ is derived for 39 of them, which is obviously larger and implies more small particles at smaller extinction. In addition, the scale height of the dust disk is found to be about 100 pc and becomes large at the anticenter direction due to the disk flaring.
The Small Magellanic Cloud (SMC) is an excellent laboratory to study the formation of solar-mass stars in a low-metallicity environment, similar to the conditions expected in the early phases of galactic evolution. Here we present preliminary results from a search for low-mass pre-main-sequence stars in the SMC based on Hubble Space Telescope archival data. Candidates are selected on the basis of their H_alpha emission and location in the [(F675W-F814W), F814W] color-magnitude diagram. We discuss characteristics of our candidate T Tauri sample and possible follow up work.
The immediate vicinity of T Tauri was observed with the new high-contrast imaging instrument SPHERE at the VLT to resolve remaining mysteries of the system, such as the putative small edge-on disk around T Tauri Sa, and the assignment of the complex outflow patterns to the individual stars. We used SPHERE IRDIS narrow-band classical imaging in Pa$beta$, Br$gamma$, and the $ u$ = 1-0 S(1) line of H$_2$, as well as in the nearby continua to obtain high spatial resolution and high contrast images over the NIR spectral range. Line maps were created by subtracting the nearby continuum. We also re--analyzed coronagraphic data taken with SPHEREs integral field spectrograph in $J$- and $H$-band with the goal to obtain a precise extinction estimate to T Tauri Sb, and to verify the recently reported claim of another stellar or substellar object in the system. A previously unknown coiling structure is observed southwest of the stars in reflected light, which points to the vicinity of T Tauri N. We map the circumbinary emission from T Tauri S in $J$- and $H$-band scattered light for the first time, showing a morphology which differs significantly from that observed in $K$-band. H$_2$ emission is found southwest of the stars, near the coiling structure. We also detect the H$_2$ emitting region T Tauri NW. The motion of T Tauri NW with respect to T Tauri N and S between previous images and our 2014 data, provides strong evidence that the Southeast-Northwest outflow triggering T Tauri NW is likely to be associated with T Tauri S. We further present accurate relative photometry of the stars, confirming that T Tauri Sa is brightening again. Our analysis rules out the presence of the recently proposed companion to T Tauri N with high confidence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا