Do you want to publish a course? Click here

The Interaction of Radio Sources and X-ray-Emitting Gas in Cooling Flows

64   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent observations of the interactions between radio sources and the X-ray-emitting gas in cooling flows in the cores of clusters of galaxies are reviewed. The radio sources inflate bubbles in the X-ray gas, which then rise buoyantly outward in the clusters transporting energy to the intracluster medium (ICM). The bright rims of gas around the radio bubbles are cool, rather than hot, and do not show signs of being strongly shocked. Energy deposited into the ICM over the lifetime of a cluster through several outbursts of a radio source helps to account for at least some of the gas that is missing in cooling flows at low temperatures.



rate research

Read More

118 - Paul Nulsen 2003
The process that prevents the deposition of cooled gas in cooling flows must rely on feedback in order to maintain gas with short cooling times, while preventing the bulk of the gas from cooling to low temperatures. The primary candidate for the feedback mechanism is the accretion of cooled and cooling gas by an active galactic nucleus (AGN). Despite some difficulties with this model, the high incidence of central radio sources in cooling flows and the common occurrence of radio lobe cavities, together, support this view. The Bondi accretion rate for the intracluster gas onto the AGN depends on the gas properties only through its specific entropy and that is governed directly by competition between heating and cooling. This provides a viable link for the feedback process. It is argued that the mass accreted between outbursts by the central AGN is only sensitive to the mass of the black hole and the gas temperature. Bondi accretion by an AGN leads to a simple expression for outburst energy that can be tested against observations.
146 - B.R. McNamara 2000
We present Chandra X-ray Observations of the Hydra A cluster of galaxies, and we report the discovery of structure in the central 80 kpc of the clusters X-ray-emitting gas. The most remarkable structures are depressions in the X-ray surface brightness, $sim 25-35$ kpc diameter, that are coincident with Hydra As radio lobes. The depressions are nearly devoid of X-ray-emitting gas, and there is no evidence for shock-heated gas surrounding the radio lobes. We suggest the gas within the surface brightness depressions was displaced as the radio lobes expanded subsonically, leaving cavities in the hot atmosphere. The gas temperature declines from 4 keV at 70 kpc to 3 keV in the inner 20 kpc of the brightest cluster galaxy (BCG), and the cooling time of the gas is $sim 600$ Myr in the inner 10 kpc. These properties are consistent with the presence of a $sim 34 msunyr$ cooling flow within a 70 kpc radius. Bright X-ray emission is present in the BCG surrounding a recently-accreted disk of nebular emission and young stars. The star formation rate is commensurate with the cooling rate of the hot gas within the volume of the disk, although the sink for the material cooling at larger radii remains elusive.
We present a Chandra observation of Abell 2052, a cooling flow cluster with a central cD that hosts the complex radio source 3C 317. The data reveal ``holes in the X-ray emission that are coincident with the radio lobes. The holes are surrounded by bright ``shells of X-ray emission. The data are consistent with the radio source displacing and compressing, and at the same time being confined by, the X-ray gas. The compression of the X-ray shells appears to have been relatively gentle and, at most, slightly transonic. The pressure in the X-ray gas (the shells and surrounding cooler gas) is approximately an order of magnitude higher than the minimum pressure derived for the radio source, suggesting that an additional source of pressure is needed to support the radio plasma. The compression of the X-ray shells has speeded up the cooling of the shells, and optical emission line filaments are found coincident with the brightest regions of the shells.
62 - P. E. J. Nulsen 2003
Recent data have radically altered the X-ray perspective on cooling flow clusters. X-ray spectra show that very little of the hot intracluster medium is cooler than about 1 keV, despite having short cooling times. In an increasing number of cooling flow clusters, the lobes of a central radio source are found to have created cavities in the hot gas. Generally, the cavities are not overpressured relative to the intracluster gas, but act as buoyant bubbles of radio emitting plasma that drive circulation as they rise, mixing and heating the intracluster gas. All this points to the radio source, i.e. an active galactic nucleus, as the heat source that prevents gas from cooling to low temperatures. However, heating due to bubbles alone seems to be insufficient, so the energetics of cooling flows remain obscure. We briefly review the data and theory supporting this view and discuss the energetics of cooling flows.
We present deep emission-line imaging taken with the SOAR Optical Imaging Camera of the brightest cluster galaxy (BCG) in the nearby (z=0.035) X-ray cluster 2A0335+096. We analyze long-slit optical spectroscopy, archival VLA, Chandra X-ray, and XMM UV data. 2A0335+096 is a bright, cool-core X-ray cluster, once known as a cooling flow. Within the highly disturbed core revealed by Chandra X-ray observations, 2A0335+096 hosts a highly structured optical emission-line system. The redshift of the companion is within 100 km/s of the BCG and has certainly interacted with the BCG, and is likely bound to it. The comparison of optical and radio images shows curved filaments in H-alpha emission surrounding the resolved radio source. The velocity structure of the emission-line bar between the BCG nucleus and the companion galaxy provides strong evidence for an interaction between the two in the last ~50 Myrs. The age of the radio source is similar to the interaction time, so this interaction may have provoked an episode of radio activity. We estimate a star formation rate of >7 solar mass/yr based on the Halpha and archival UV data, a rate similar to, but somewhat lower than, the revised X-ray cooling rate of 10-30 solar masses/year estimated from XMM spectra by Peterson & workers. The Halpha nebula is limited to a region of high X-ray surface brightness and cool X-ray temperature. The detailed structures of H-alpha and X-ray gas differ. The peak of the X-ray emission is not the peak of H-alpha emission, nor does it lie in the BCG. The estimated age of the radio lobes and their interaction with the optical emission-line gas, the estimated timescale for depletion and accumulation of cold gas, and the dynamical time in the system are all similar, suggesting a common trigger mechanism.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا