Do you want to publish a course? Click here

Molecular Gas in Tidal Dwarf Galaxies: On-going Galaxy Formation

48   0   0.0 ( 0 )
 Added by Jonathan Braine
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the process of galaxy formation as can be observed in the only currently forming galaxies -- the so-called Tidal Dwarf Galaxies, hereafter TDGs -- through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a {it bona fide} galaxy. We have now detected CO in 9 TDGs with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few $10^8 M_odot$. The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H$_2$. Although uncertainties are still large for individual objects as the geometry is unknown, we find that the dynamical masses of TDGs, estimated from the CO line widths, do not seem to be greater than the visible masses (HI + H$_2$ + a stellar component), i.e., TDGs require no dark matter. We provide evidence that TDGs are self-gravitating entities, implying that we are witnessing the ensemble of processes in galaxy formation: concentration of large amounts of gas in a bound object, condensation of the gas, which is atomic at this point, to form molecular gas and the subsequent star formation from the dense molecular component.

rate research

Read More

40 - J. Braine 2001
[Abridged...] We investigate the process of galaxy formation as can be observed in the only currently forming galaxies -- the so-called Tidal Dwarf Galaxies, hereafter TDGs -- through observations of the molecular gas detected via its CO emission. These objects are formed of material torn off of the outer parts of a spiral disk due to tidal forces in a collision between two massive galaxies. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a bona fide galaxy. We have detected CO in 8 TDGs (two of them have already been published in Braine et al. 2000), with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 10^8 M_sun. The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H2.... Although higher spatial resolution CO (and HI) observations would help reduce the uncertainties, we find that TDGs require no dark matter, which would make them the only galaxy-sized systems where this is the case. Dark matter in spirals should then be in a halo and not a rotating disk. Most dwarf galaxies are dark matter-rich, implying that they are not of tidal origin....
85 - F. Lelli , P.-A. Duc , E. Brinks 2015
Tidal dwarf galaxies (TDGs) are recycled objects that form within the collisional debris of interacting/merging galaxies. They are expected to be devoid of non-baryonic dark matter, since they can form only from dissipative material ejected from the discs of the progenitor galaxies. We investigate the gas dynamics in a sample of six bona-fide TDGs around three interacting and post-interacting systems: NGC 4694, NGC 5291, and NGC 7252 (Atoms for Peace). For NGC 4694 and NGC 5291 we analyse existing HI data from the Very Large Array (VLA), while for NGC 7252 we present new HI observations from the Jansky VLA together with long-slit and integral-field optical spectroscopy. For all six TDGs, the HI emission can be described by rotating disc models. These HI discs, however, have undergone less than a full rotation since the time of the interaction/merger event, raising the question of whether they are in dynamical equilibrium. Assuming that these discs are in equilibrium, the inferred dynamical masses are consistent with the observed baryonic masses, implying that TDGs are devoid of dark matter. This puts constraints on putative dark discs (either baryonic or non-baryonic) in the progenitor galaxies. Moreover, TDGs seem to systematically deviate from the baryonic Tully-Fisher relation. These results provide a challenging test for alternative theories like MOND.
Tidal dwarf galaxies (TDGs) are gravitationally bound condensations of gas and stars formed during galaxy interactions. Here we present multi-configuration ALMA observations of J1023+1952, a TDG in the interacting system Arp 94, where we resolve CO(2-1) emission down to giant molecular clouds (GMCs) at 0.64 ~ 45pc resolution. We find a remarkably high fraction of extended molecular emission (~80-90%), which is filtered out by the interferometer and likely traces diffuse gas. We detect 111 GMCs that give a similar mass spectrum as those in the Milky Way and other nearby galaxies (a truncated power law with slope of -1.76+/-0.13). We also study Larsons laws over the available dynamic range of GMC properties (~2 dex in mass and ~1 dex in size): GMCs follow the size-mass relation of the Milky Way, but their velocity dispersion is higher such that the size-linewidth and virial relations appear super-linear, deviating from the canonical values. The global molecular-to-atomic gas ratio is very high (~1) while the CO(2-1)/CO(1-0) ratio is quite low (~0.5), and both quantities vary from north to south. Star formation is predominantly taking place in the south of the TDG, where we observe projected offsets between GMCs and young stellar clusters ranging from ~50pc to ~200pc; the largest offsets correspond to the oldest knots, as seen in other galaxies. In the quiescent north, we find more molecular clouds and a higher molecular-to-atomic gas ratio (~1.5); atomic and diffuse molecular gas also have a higher velocity dispersion there. Overall, the organisation of the molecular ISM in this TDG is quite different from other types of galaxies on large scales, but the properties of GMCs seem fairly similar, pointing to near universality of the star-formation process on small scales.
Like massive galaxies, dwarf galaxies are expected to undergo major mergers with other dwarfs. However, the end state of these mergers and the role that merging plays in regulating dwarf star formation is uncertain. Using imaging from the Hyper Suprime-Cam Subaru Strategic program, we construct a sample of dwarf-dwarf mergers and examine the star formation and host properties of the merging systems. These galaxies are selected via an automated detection algorithm from a sample of 6875 spectroscopically selected isolated dwarf galaxies at $z<0.12$ and $log(M_star/M_odot)<9.6$ from the Galaxy and Mass Assembly (GAMA) and Sloan Digital Sky Survey (SDSS) spectroscopic campaigns. We find a total tidal feature detection fraction of 3.29% (6.1% when considering only galaxies at $z<0.05$). The tidal feature detection fraction rises strongly as a function of star formation activity; 15%-20% of galaxies with extremely high H$alpha$ equivalent width (H$alpha$ EW > 250 Angstrom) show signs of tidal debris. Galaxies that host tidal debris are also systematically bluer than the average galaxy at fixed stellar mass. These findings extend the observed dwarf-dwarf merger sequence with a significant sample of dwarf galaxies, indicating that star formation triggered in mergers between dwarf galaxies continues after coalescence.
We present DEIMOS multi-object spectroscopy (MOS) of 22 star-forming dwarf galaxies located in four gas-rich groups, including six newly-discovered dwarfs. Two of the galaxies are strong tidal dwarf galaxy (TDG) candidates based on our luminosity-metallicity relation definition. We model the rotation curves of these galaxies. Our sample shows low mass-to-light ratios (M/L=0.73$pm0.39M_odot/L_odot$) as expected for young, star-forming dwarfs. One of the galaxies in our sample has an apparently strongly-falling rotation curve, reaching zero rotational velocity outside the turnover radius of $r_{turn}=1.2r_e$. This may be 1) a polar ring galaxy, with a tilted bar within a face-on disk; 2) a kinematic warp. These scenarios are indistinguishable with our current data due to limitations of slit alignment inherent to MOS-mode observations. We consider whether TDGs can be detected based on their tidal radius, beyond which tidal stripping removes kinematic tracers such as H$alpha$ emission. When the tidal radius is less than about twice the turnover radius, the expected falling rotation curve cannot be reliably measured. This is problematic for as much as half of our sample, and indeed more generally, galaxies in groups like these. Further to this, the H$alpha$ light that remains must be sufficiently bright to be detected; this is only the case for three (14%) galaxies in our sample. We conclude that the falling rotation curves expected of tidal dwarf galaxies are intrinsically difficult to detect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا