No Arabic abstract
We report the first unambiguous detection of X-ray emission originating from Saturn with a Chandra observation, duration 65.5 ksec with ACIS-S3. Beyond the pure detection we analyze the spatial distribution of X-rays on the planetary surface, the light curve, and some spectral properties. The detection is based on 162 cts extracted from the ACIS-S3 chip within the optical disk of Saturn. We found no evidence for smaller or larger angular extent. The expected background level is 56 cts, i.e., the count rate is (1.6 +- 0.2) 10^-3 cts/s. The extracted photons are rather concentrated towards the equator of the apparent disk, while both polar caps have a relative photon deficit. The inclination angle of Saturn during the observation was -27 degrees, so that the northern hemisphere was not visible during the complete observation. In addition, it was occulted by the ring system. We found a small but significant photon excess at one edge of the ring system. The light curve shows a small dip twice at identical phases, but rotational modulation cannot be claimed at a significant level. Spectral modeling results in a number of statistically, but not necessarily physically, acceptable models. The X-ray flux level we calculate from the best-fit spectral models is 6.8 10^-15 erg/cm^2/s (in the energy interval 0.1-2keV), which corresponds to an X-ray luminosity of 8.7 10^14 erg/s. A combination of scatter processes of solar X-rays requires a relatively high albedo favoring internal processes, but a definitive explanation remains an open issue.
Using the Advanced CCD Imaging Spectrometer (ACIS), the Chandra X-ray Observatory (CXO) observed the Saturnian system for one rotation of the planet (~37 ks) on 20 January, 2004, and again on 26-27 January, 2004. In this letter we report the detection of X-ray emission from the rings of Saturn. The X-ray spectrum from the rings is dominated by emission in a narrow (~130 eV wide) energy band centered on the atomic oxygen K-alpha fluorescence line at 0.53 keV. The X-ray power emitted from the rings in the 0.49-0.62 keV band is 84 MW, which is about one-third of that emitted from Saturn disk in the photon energy range 0.24-2.0 keV. Our analysis also finds a clear detection of X-ray emission from the rings in the 0.49-0.62 keV band in an earlier (14-15 April, 2003) Chandra ACIS observation of Saturn. Fluorescent scattering of solar X-rays from oxygen atoms in the H2O icy ring material is the likely source mechanism for ring X-rays, consistent with the scenario of solar photo-production of a tenuous ring oxygen atmosphere and ionosphere recently discovered by Cassini.
Young O stars are strong, hard, and variable X-ray sources, properties which strongly affect their circumstellar and galactic environments. After ~1 Myr, these stars settle down to become steady sources of soft X-rays. I use high-resolution X-ray spectroscopy and MHD modeling to show that young O stars like theta-1 Ori C are well explained by the magnetically channeled wind shock scenario. After their magnetic fields dissipate, older O stars produce X-rays via shock heating in their unstable stellar winds. Here too I use X-ray spectroscopy and numerical modeling to confirm this scenario. In addition to elucidating the nature and cause of the O star X-ray emission, modeling of the high-resolution X-ray spectra of O supergiants provides strong evidence that mass-loss rates of these O stars have been overestimated.
We report Chandra ACIS observations of the fields of 4 QSOs showing strong extended optical emission-line regions. Two of these show no evidence for significant extended X-ray emission. The remaining two fields, those of 3C 249.1 and 4C 37.43, show discrete (but resolved) X-ray sources at distances ranging from ~10 to ~40 kpc from the nucleus. In addition, 4C 37.43 also may show a region of diffuse X-ray emission extending out to ~65 kpc and centered on the QSO. It has been suggested that extended emission-line regions such as these may originate in the cooling of a hot intragroup medium. We do not detect a general extended medium in any of our fields, and the upper limits we can place on its presence indicate cooling times of at least a few 10^9 years. The discrete X-ray emission sources we detect cannot be explained as the X-ray jets frequently seen associated with radio-loud quasars, nor can they be due to electron scattering of nuclear emission. The most plausible explanation is that they result from high-speed shocks from galactic superwinds resulting either from a starburst in the QSO host galaxy or from the activation of the QSO itself. Evidence from densities and velocities found from studies of the extended optical emission around QSOs also supports this interpretation.
The past decade has seen a large progress in the X-ray investigation of early-type galaxies of the local universe, and first attempts have been made to reach redshifts z>0 for these objects, thanks to the high angular resolution and sensitivity of the satellites Chandra and XMM-Newton. Major advances have been obtained in our knowledge of the three separate contributors to the X-ray emission, that are the stellar sources, the hot gas and the galactic nucleus. Here a brief outline of the main results is presented, pointing out the questions that remain open, and finally discussing the prospects to solve them with a wide area X-ray survey mission such as WFXT.
Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ~60% of stars compiled in the catalog of Petit et al. 2013). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss-rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower-Mdot B stars and flattens for the more luminous, higher-Mdot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g. higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest some temperature stratification to exist in massive stars magnetospheres.