No Arabic abstract
Chemical compositions of four barium stars HD 26886, HD 27271, HD 50082 and HD 98839 are studied based on high resolution, high signal-to-noise Echelle spectra. Results show that all of them are disk stars. Their alpha and iron peak elements are similar to the solar abundances. The neutron-capture process elements are overabundant relative to the Solar. The heavy-element abundances of the strong Ba star HD 50082 are higher than those of other three mild Ba stars. Its mass is 1.32Msun (+0.28,-0.22Msun), and is consistent with the average mass of strong Ba stars (1.5Msun). For mild Ba star HD 27271 and HD 26886, the derived masses are 1.90Msun (+0.25,-0.20Msun) and 2.78Msun (+0.75,-0.78M_sun), respectively, which are consistent with the average mass of mild Ba stars. We also calculate the theoretical abundances of Ba stars by combining the AGB stars nucleosynthesis and wind accretion formation scenario of Ba binary systems. The comparisons between the observed abundance patterns of the sample stars with the theoretical results show that wind accretion scenario can explain the abundance patterns of HD 50082 and HD 27271 well, but fail to explain the abundances of HD 26886. It means that the mild Ba star HD 26886, with shorter orbital period (P<1600 d), may be formed from other scenarios. The high mass mild Ba star HD 98839, with 3.62M_sun, and with very long orbital period (P>11000 d), may be either a star with the heavy elements enriched by itself or a true Ba star.
We present the chemical compositions of four K giants CS 22877-1, CS 22166-16, CS22169-35 and BS 16085 - 0050 that have [Fe/H] in the range -2.4 to -3.1. Metal-poor stars with [Fe/H] < -2.5 are known to exhibit considerable star - to - star variations of many elements. This quartet confirms this conclusion. CS 22877-1 and CS 22166-16 are carbon-rich. There is significant spread for [$alpha$/Fe] within our sample where [$alpha$/Fe] is computed from the mean of the [Mg/Fe], and [Ca/Fe] ratios. BS 16085 - 0050 is remarkably $alpha$ enriched with a mean [$alpha$/Fe] of $+$0.7 but CS 22169-35 is $alpha$-poor. The aluminium abundance also shows a significant variation over the sample. A parallel and unsuccessful search among high-velocity late-type stars for metal-poor stars is described.
We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures, surface gravities, metallicity and microturbulent velocity) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The YI and ZrI abundances are lower than Ba, La and Eu, but higher than the light elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe]>0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe]<0.54.
This work explores the detailed chemistry of the Milky Way bulge using the HERMES spectrograph on the Anglo-Australian Telescope. Here we present the abundance ratios of 13 elements for 832 red giant branch and clump stars along the minor bulge axis at latitudes $b=-10^{circ}, -7.5$ and $-5^{circ}$. Our results show that none of the abundance ratios vary significantly with latitude. We also observe {color{red}disk-like} [Na/Fe] abundance ratios, which indicates the bulge does not contain helium-enhanced populations as observed in some globular clusters. Helium enhancement is therefore not the likely explanation for the double red-clump observed in the bulge. We confirm that bulge stars mostly follow abundance trends observed in the disk. However, this similarity is not confirmed across for all elements and metallicity regimes. The more metal-poor bulge population at [Fe/H] $lesssim -0.8$ is enhanced in the elements associated with core collapse supernovae (SNeII). In addition, the [La/Eu] abundance ratio suggests higher $r$-process contribution, and likely higher star formation in the bulge compared to the disk. This highlights the complex evolution in the bulge, which should be investigated further, both in terms of modelling; and with additional observations of the inner Galaxy.
We present a detailed abundance study of 11 RR Lyrae ab-type variables: AS Vir, BS Aps, CD Vel, DT Hya, RV Oct, TY Gru, UV Oct, V1645 Sgr, WY Ant, XZ Aps, and Z Mic.High resolution and high S/N echelle spectra of these variables were obtained with 2.5 m du Pont telescope at the Las Campanas Observatory. We obtained more than 2300 spectra, roughly 200 spectra per star, distributed more or less uniformly throughout the pulsational cycles. A new method has been developed to obtain initial effective temperature of our sample stars at a specific pulsational phase. We find that the abundance ratios are generally consistent with those of similar metallicity field stars in different evolutionary states and throughout the pulsational cycles for RR Lyrae stars. TY Gru remains the only n-capture enriched star among the RRab in our sample. A new relation is found between microturbulence and effective temperature among stars of the HB population. In addition, the variation of microturbulence as a function of phase is empirically shown to be similar to the theoretical variation. Finally, we conclude that the derived teffand log g values of our sample stars follow the general trend of a single mass evolutionary track.
We present elemental abundance results from high resolution spectral analysis of three nitrogen-enhanced barium stars. The analysis is based on spectra obtained with the FEROS attached to 1.52m telescope at ESO, Chile. The spectral resolution is R~48000 and the spectral coverage spans from 3500-9000AA,. For the objects HD 51959 and HD 88035, we present the first time abundance analyses results. Although a few studies are available in literature on the object HD 121447, the results are significantly different from each other. We have therefore carried out a detailed chemical composition study for this object based on a high resolution spectrum with high S/N ratio, for a better understanding of the origin of the abundance patterns observed in this star. Stellar atmospheric parameters, the effective temperature, surface gravity, microturbulence and metallicity of the stars are determined from the LTE analysis using model atmospheres. The metallicity of HD 51959 and HD 88035 are found to be near-solar; they exhibit enhanced abundances of neutron-capture elements. HD 121447 is found to be moderately metal-poor with [Fe/H]=-0.65. While carbon is near-solar in the other two objects, HD 121447 shows carbon enhancement at a level, [C/Fe]=0.82. Neutron-capture elements are highly enhanced with [X/Fe]>2 (X: Ba, La, Pr, Nd, Sm) in this object. The alpha- and iron-peak elements show abundances very similar to field giants with the same metallicity. From kinematic analysis all the three objects are found to be members of thin disk population with a high probability of 0.99, 0.99 and 0.92 for HD 51959, HD 88035 and HD 121447 respectively.