Do you want to publish a course? Click here

Tidal Streams and Low Mass Companions of M31

51   0   0.0 ( 0 )
 Added by Robert Braun
 Publication date 2003
  fields Physics
and research's language is English
 Authors Robert Braun




Ask ChatGPT about the research

We have imaged the extended HI environment of M31 with an unprecedented combination of high resolution and sensitivity. We detect a number of distinct High Velocity Cloud components associated with M31. A sub-set of the features within 30 kpc appear to be tidal in origin. A filamentary ``halo component is concentrated at the M31 systemic velocity and appears to extend into a ``bridge connecting M31 and M33. This may represent condensation in coronal gas. A population of discrete clouds is detected out to radii of about 150 kpc. Discrete cloud line-widths are correlated with HI mass and are consistent with a 100:1 ratio of dark to HI mass. These may be the gaseous counterparts of low-mass dark-matter satellites. The combined distribution of M31s HVC components can be characterized by a spatial Gaussian of 55 kpc dispersion and yields an N_HI distribution function which agrees well with that of low red-shift QSOs.



rate research

Read More

105 - Heidi Jo Newberg 2021
Dwarf galaxies that come too close to larger galaxies suffer tidal disruption; the differential gravitational force between one side of the galaxy and the other serves to rip the stars from the dwarf galaxy so that they instead orbit the larger galaxy. This process produces tidal streams of stars, which can be found in the stellar halo of the Milky Way, as well as in halos of other galaxies. This chapter provides a general introduction to tidal streams, including the mechanism through which the streams are created, the history of how they were discovered, and the observational techniques by which they can be detected. In addition, their use in unraveling galaxy formation history and the distribution of dark matter in galaxies is discussed, as is the interaction between these dwarf galaxy satellites and the disk of the larger galaxy.
124 - M.Pohlen 2003
We have the unique opportunity to observe and model nearby streams around the two large Local Group spirals Milky Way and M31 in great detail. However, the detection of streams around other external galaxies is required to verify the general application of the derived results. We give a short summary of streams around other galaxies known in the literature, measuring for the first time the surface brightness of Malins M83 stream with modern CCD imaging. In addition, we present four new detections of possible stellar streams around disk galaxies.
373 - Eike W. Guenther 2003
Up to now, most planet search projects have concentrated on F to K stars. In order to considerably widen the view, we have stated a survey for planets of old, nearby brown dwarfs and very low mass stars. Using UVES, we have observed 26 brown dwarfs and very low mass stars. These objects are quite inactive and are thus highly suitable for such a project. Two objects were found to be spectroscopic binaries. Another object shows significant radial velocity variations. From our measurements, we conclude that this object either has a planetary-mass companion, or the variations are caused by surface features. Within the errors of the measurements, the remaining objects are constant in radial velocity. While it is impossible to strictly exclude an orbiting planet from sparsely sampled RV data, we conclude that it is unlikely that these objects are orbited by massive planets with periods of 40 days or less.
We present preliminary results from a coronagraphic survey of young nearby Sun-like stars using the Palomar and Keck adaptive optics systems. We have targeted 251 solar analogs (F5-K5) at 20-160 pc from the Sun, spanning the 3-3000 Myr age range. The youngest (<500 Myr) 100 of these have been imaged with deeper exposures to search for sub-stellar companions. The deep survey is sensitive to brown-dwarf companions at separations >0.5 from their host stars, with sensitivity extending to planetary-mass (5-15 Mjup) objects at wider (>3) separations. Based on the discovery of a number of new low-mass (<0.2 Msun) stellar companions, we infer that their frequency at >20 AU separations (probed via direct imaging) may be greater (12%) than that found from radial velocity surveys probing <4 AU separations (6%; Mazeh et al. 2003). We also report the astrometric confirmation of the first sub-stellar companion from the survey - an L4 brown dwarf at a projected distance of 44 AU from the 500 Myr-old star HD 49197. Based on this detection, we estimate that the frequency of sub-stellar companions to solar-type stars is at least 1%, and possibly of order a few per cent.
It has been suggested that besides stellar companions, substellar objects in close orbits may be able to trigger mass loss in a common envelope phase and form hot subdwarfs. In an ongoing project we search for close substellar companions combining time resolved high resolution spectroscopy with photometry. We determine the fraction of as yet undetected radial velocity variable systems from a sample of 27 apparently single sdB stars to be 16%. We discovered low-mass stellar companions to the He-sdB CPD-20 1123 and the pulsator KPD 0629-0016. The brown dwarf reported to orbit the eclipsing binary SDSS J0820+0008 could be confirmed by an analysis of high resolution spectra taken with UVES. Reflection effects have been detected in the light curves of the known sdB binaries CPD-64 481 and BPS CS 22169-0001. The inclinations of these systems must be much higher than expected and the most likely companion masses are in the substellar regime. Finally, we determined the orbit of the sdB binary PHL 457, which has a very small radial velocity amplitude and may host the lowest mass substellar companion known. The implications of these new results for the open question of sdB formation are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا