Do you want to publish a course? Click here

Properties of Dark Matter Halos in Disk Galaxies

62   0   0.0 ( 0 )
 Added by Roelof S. de Jong
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a simple technique to estimate mass-to-light (M/L) ratios of stellar populations based on two broadband photometry measurements, i.e. a color-M/L relation. We apply the color-M/L relation to galaxy rotation curves, using a large set of galaxies that span a great range in Hubble type, luminosity and scale size and that have accurately measured HI and/or Halpha rotation curves. Using the color-M/L relation, we construct stellar mass models of the galaxies and derive the dark matter contribution to the rotation curves. We compare our dark matter rotation curves with adiabatically contracted Navarro, Frenk, & White (1997, NFW hereafter) dark matter halos. We find that before adiabatic contraction most high surface brightness galaxies and some low surface brightness galaxies are well fit by a NFW dark matter profile. However, after adiabatic contraction, most galaxies are poorly fit in the central few kpc. The observed angular momentum distribution in the baryonic component is poorly matched by LambdaCDM model predictions, indicating that the angular momentum distribution is not conserved during the galaxy assembly process. We find that in most galaxies the dark matter distribution can be derived by scaling up the HI gas contribution. However, we find no consistent value for the scaling factor among all the galaxies.



rate research

Read More

Deep optical/near-IR surface photometry of galaxies outside the Local Group have revealed faint and very red halos around objects as diverse as disk galaxies and starbursting dwarf galaxies. The colours of these structures are too extreme to be reconciled with stellar populations similar to those seen in the stellar halos of the Milky Way or M31, and alternative explanations like dust reddening, high metallicities or nebular emission are also disfavoured. A stellar population obeying an extremely bottom-heavy initial mass function (IMF), is on the other hand consistent with all available data. Because of its high mass-to-light ratio, such a population would effectively behave as baryonic dark matter and could account for some of the baryons still missing in the low-redshift Universe. Here, we give an overview of current red halo detections, alternative explanations for the origin of the red colours and ongoing searches for red halos around types of galaxies for which this phenomenon has not yet been reported. A number of potential tests of the bottom-heavy IMF hypothesis are also discussed.
Analytic arguments and numerical simulations show that bosonic ultra-light dark matter (ULDM) would form cored density distributions (`solitons) at the center of galaxies. ULDM solitons offer a promising way to exclude or detect ULDM by looking for a distinctive feature in the central region of galactic rotation curves. Baryonic contributions to the gravitational potential pose an obstacle to such analyses, being (i) dynamically important in the inner galaxy and (ii) highly non-spherical in rotation-supported galaxies, resulting in non-spherical solitons. We present an algorithm for finding the ground state soliton solution in the presence of stationary non-spherical background baryonic mass distribution. We quantify the impact of baryons on the predicted ULDM soliton in the Milky Way and in low surface-brightness galaxies from the SPARC database.
483 - T.Treu 2003
We describe the first results from two observational projects aimed at measuring the amount and spatial distribution of dark matter in distant early-type galaxies (E/S0s) and clusters of galaxies. At the galaxy scale, the Lenses Structure and Dynamics (LSD) Survey is gathering kinematic data for distant (up to $zsim1$) E/S0s that are gravitational lenses. A joint lensing and dynamical analysis constrains the fraction of dark matter within the Einstein radius, the mass-to-light ratio of the stellar component, and the total slope of the mass density profile. These properties and their evolution with redshift are briefly discussed in terms of the formation and evolution of E/S0 galaxies and measurement of the Hubble Constant from gravitational time delay systems. At the cluster scale -- after careful removal of the stellar component with a joint lensing and dynamical analysis -- systems with giant radial arcs can be used to measure precisely the inner slope of the dark matter halo. An HST search for radial arcs and the analysis of a first sample are briefly discussed in terms of the universal dark matter halos predicted by CDM simulations.
64 - Burkhard Fuchs 2005
I discuss the dynamical interaction of galactic disks with the surrounding dark matter halos. In particular it is demonstrated that if the self-gravitating shearing sheet, a model of a patch of a galactic disk, is embedded in a live dark halo, this has a strong effect on the dynamics of density waves in the sheet. I describe how the density waves and the halo interact via halo particles either on orbits in resonance with the wave or on non-resonant orbits. Contrary to expectation the presence of the halo leads to a very considerable enhancement of the amplitudes of the density waves in the shearing sheet. This effect appears to be the equivalent of the recently reported enhanced growth of bars in numerically simulated stellar disks embedded in live dark halos. Finally I discuss the counterparts of the perturbations of the disk in the dark halo.
We investigate a hypothesis regarding the origin of the scalelength in halos formed in cosmological N-body simulations. This hypothesis can be viewed as an extension of an earlier idea put forth by Merritt and Aguilar. Our findings suggest that a phenomenon related to the radial orbit instability is present in such halos and is responsible for density profile shapes. This instability sets a scalelength at which the velocity dispersion distribution changes rapidly from isotropic to radially anisotropic. This scalelength is reflected in the density distribution as the radius at which the density profile changes slope. We have tested the idea that radially dependent velocity dispersion anisotropy leads to a break in density profile shape by manipulating the input of a semi-analytic model to imitate the velocity structure imposed by the radial orbit instability. Without such manipulation, halos formed are approximated by single power-law density profiles and isotropic velocity distributions. Halos formed with altered inputs display density distributions featuring scalelengths and anisotropy profiles similar to those seen in cosmological N-body simulations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا