CCD Photometry of the Globular Cluster omega Centauri. II. Stellar Populations and Age-Metallicity Relation


Abstract in English

We present wide-field and high-precision BV and Ca & Stromgren by photometry of omega Centauri, which represents one of the most extensive photometric surveys to date for this cluster. The member stars of omega Cen are well discriminated from foreground Galactic field stars in the hk [=(Ca-b)-(b-y)] vs. b-y diagram. The resulting cleaned color-magnitude diagram (CMD) has allowed us to obtain an accurate distribution of the red horizontal branch (HB) and the asymptotic giant branch stars. We confirm the presence of several red giant branches (RGBs) with the most metal-rich sequence well separated from other bluer metal-poor ones. Our population models suggest that four populations with different metallicities can reproduce the observed nature of the RGB. The HB distribution is also found to be consistent with the multiple stellar populations of the RGB. From our population models, we propose that the most metal-rich population is about 4 Gyr younger than the dominant metal-poor population, indicating that omega Cen was enriched over this timescale. We identify, for the first time, a continuous and slanting RGB bump in the CMD of omega Cen, which is due to the metallicity spread amongst the RGB stars. Our photometry also reveals a significant population of blue straggler stars. The discovery of several populations and the internal age-metallicity relation of omega Cen provides good evidence that omega Cen was once part of a more massive system that merged with the Milky Way, as the Sagittarius dwarf galaxy is in the process of doing at the present time.

Download