No Arabic abstract
We use a set of high-resolution cosmological N-body simulations to investigate the inner mass profile of galaxy-sized cold dark matter (CDM) halos. These simulations extend the thorough numerical convergence study presented in Paper I of this series (Power et al. 2003), and demonstrate that the mass profile of CDM halos can be robustly estimated beyond a minimum converged radius of order r_conv ~ 1 kpc/h in our highest resolution runs. The density profiles of simulated halos become progressively shallow from the virial radius inwards, and show no sign of approaching a well-defined power-law behaviour near the centre. At r_conv, the logarithmic slope of the density profile is steeper than the asymptotic rho propto r^-1 expected from the formula proposed by Navarro, Frenk, and White (1996), but significantly shallower than the steeply divergent rho propto r^-1.5 cusp proposed by Moore et al. (1999). We perform a direct comparison of the spherically-averaged dark matter circular velocity (V_c) profiles with rotation curves of low surface brightness (LSB) galaxies from the samples of de Blok et al. (2001), de Blok and Bosma (2002), and Swaters et al. (2003). Most (about two-thirds) LSB galaxies in this dataset are roughly consistent with CDM halo V_c profiles. However, about one third of LSBs in these samples feature a sharp transition between the rising and flat part of the rotation curve that is not seen in the V_c profiles of CDM halos. This discrepancy has been interpreted as excluding the presence of cusps, but we argue that it might simply reflect the difference between circular velocity and gas rotation speed likely to arise in gaseous disks embedded within realistic, triaxial CDM halos.
A recent study has claimed that the rotation curve shapes and mass densities of Low Surface Brightness (LSB) galaxies are largely consistent with $Lambda$CDM predictions, in contrast to a large body of observational work. I demonstrate that the method used to derive this conclusion is incapable of distinguishing the characteristic steep CDM mass-density distribution from the core-dominated mass-density distributions found observationally: even core-dominated pseudo-isothermal haloes would be inferred to be consistent with CDM. This method can therefore make no definitive statements on the (dis)agreement between the data and CDM simulations. After introducing an additional criterion that does take the slope of the mass-distribution into account I find that only about a quarter of the LSB galaxies investigated are possibly consistent with CDM. However, for most of these the fit parameters are so weakly constrained that this is not a strong conclusion. Only 3 out of 52 galaxies have tightly constrained solutions consistent with $Lambda$CDM. Two of these galaxies are likely dominated by stars, leaving only one possible dark matter dominated, CDM-consistent candidate, forming a mere 2 per cent of the total sample. These conclusions are based on comparison of data and simulations at identical radii and fits to the entire rotation curves. LSB galaxies that are consistent with CDM simulations, if they exist, seem to be rare indeed.
We derive the mass density profiles of dark matter halos that are implied by high spatial resolution rotation curves of low surface brightness galaxies. We find that at small radii, the mass density distribution is dominated by a nearly constant density core with a core radius of a few kpc. For rho(r) ~ r^a, the distribution of inner slopes a is strongly peaked around a = -0.2. This is significantly shallower than the cuspy a < -1 halos found in CDM simulations. While the observed distribution of alpha does have a tail towards such extreme values, the derived value of alpha is found to depend on the spatial resolution of the rotation curves: a ~ -1 is found only for the least well resolved galaxies. Even for these galaxies, our data are also consistent with constant density cores (a = 0) of modest (~ 1 kpc) core radius, which can give the illusion of steep cusps when insufficiently resolved. Consequently, there is no clear evidence for a cuspy halo in any of the low surface brightness galaxies observed.
The Thomas-Fermi approach to galaxy structure determines selfconsistently the fermionic warm dark matter (WDM) gravitational potential given the distribution function f(E). This framework is appropriate for macroscopic quantum systems: neutron stars, white dwarfs and WDM galaxies. Compact dwarf galaxies follow from the quantum degenerate regime, while dilute and large galaxies from the classical Boltzmann regime. We find analytic scaling relations for the main galaxy magnitudes as halo radius r_h, mass M_h and phase space density. The observational data for a large variety of galaxies are all well reproduced by these theoretical scaling relations. For the compact dwarfs, our results show small deviations from the scaling due to quantum macroscopic effects. We contrast the theoretical curves for the circular velocities and density profiles with the observational ones. All these results are independent of any WDM particle physics model, they only follow from the gravity interaction of the WDM particles and their fermionic nature. The theory rotation and density curves reproduce very well for r < r_h the observations of 10 different and independent sets of data for galaxy masses from 5x10^9 Msun till 5x10^{11} Msun. Our normalized circular velocity curves turn to be universal functions of r/r_h for all galaxies and reproduce very well the observational curves for r < r_h. Conclusion: the Thomas-Fermi approach correctly describes the galaxy structures (Abridged).
In the far future of an accelerating LCDM cosmology, the cosmic web of large-scale structure consists of a set of increasingly isolated halos in dynamical equilibrium. We examine the approach of collisionless dark matter to hydrostatic equilibrium using a large N-body simulation evolved to scale factor a = 100, well beyond the vacuum--matter equality epoch, a_eq ~ 0.75, and 53/h Gyr into the future for a concordance model universe (Omega_m ~ 0.3, Omega_Lambda ~ 0.7). The radial phase-space structure of halos -- characterized at a < a_eq by a pair of zero-velocity surfaces that bracket a dynamically active accretion region -- simplifies at a > 10 a_eq when these surfaces merge to create a single zero-velocity surface, clearly defining the halo outer boundary, rhalo, and its enclosed mass, mhalo. This boundary approaches a fixed physical size encompassing a mean interior density ~ 5 times the critical density, similar to the turnaround value in a classical Einstein-deSitter model. We relate mhalo to other scales currently used to define halo mass (m200, mvir, m180b) and find that m200 is approximately half of the total asymptotic cluster mass, while m180b follows the evolution of the inner zero velocity surface for a < 2 but becomes much larger than the total bound mass for a > 3. The radial density profile of all bound halo material is well fit by a truncated Hernquist profile. An NFW profile provides a somewhat better fit interior to r200 but is much too shallow in the range r200 < r < rhalo.
We study the halo mass function and inner halo structure at high redshifts ($zgeq5$) for a suite of simulations within the structure formation ETHOS framework. Scenarios such as cold dark matter (CDM), thermal warm dark matter (WDM), and dark acoustic oscillations (DAO) of various strengths are contained in ETHOS with just two parameters $h_{rm peak}$ and $k_{rm peak}$, the amplitude and scale of the first DAO peak. The Extended Press-Schechter (EPS) formalism with a smooth-$k$ filter is able to predict the cut-off in the halo mass function created by the suppression of small scale power in ETHOS models (controlled by $k_{rm peak}$), as well as the slope at small masses that is dependent on $h_{rm peak}$. Interestingly, we find that DAOs introduce a localized feature in the mass distribution of haloes, resulting in a mass function that is distinct in shape compared to either CDM or WDM. We find that the halo density profiles of ${it all}$ ETHOS models are well described by the NFW profile, with a concentration that is lower than in the CDM case in a way that is regulated by $k_{rm peak}$. We show that the concentration-mass relation for DAO models can be well approximated by the mass assembly model based on the extended Press-Schechter theory, which has been proposed for CDM and WDM elsewhere. Our results can be used to perform inexpensive calculations of the halo mass function and concentration-mass relation within the ETHOS parametrization without the need of $N-$body simulations.