Do you want to publish a course? Click here

Simulating the high-redshift universe in the sub-mm

50   0   0.0 ( 0 )
 Added by Eelco van Kampen
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

I present various simulations of an on-going large sub-mm survey, SHADES, showing how constraints can be put on galaxy formation models and cosmology from this survey.



rate research

Read More

Deep surveys of the sky at millimeter wavelengths have revealed a population of ultra-luminous infrared galaxies (ULIRGs) at high redshifts. These appear similar to local objects of similar luminosities (such as Arp220) but are much more ``important at high redshift than at low reshift, in the sense that they represent a much larger fraction of the total luminous output of the distant Universe than they do locally. In fact the ULIRGs at high redshift are producing a significant fraction (>= 15%) of the total luminous output of the Universe averaged over all wavelengths and all epochs. The high z ULIRGs could plausibly be responsible for producing the metal-rich spheroidal components of galaxies, including the bulges that are the subject of this conference. In this case we would infer from the redshift distribution of the sources that much of this activity is probably happening relatively recently at z <= 2.
Recent observations have gathered a considerable sample of high redshift galaxy candidates and determined the evolution of their luminosity function (LF). To interpret these findings, we use cosmological SPH simulations including, in addition to standard physical processes, a detailed treatment of the Pop III-Pop II transition in early objects. The simulated high-z galaxies match remarkably well the amplitude and slope of the observed LF in the redshift range 5<z<10. The LF shifts towards fainter luminosities with increasing redshift, while its faint-end slope keeps an almost constant value, alpha ~-2. The stellar populations of high-z galaxies have ages of 100-300 (40-130) Myr at z=5 (z=7-8), implying an early (z>9.4) start of their star formation activity; the specific star formation rate is almost independent of galactic stellar mass. These objects are enriched rapidly with metals and galaxies identified by HST/WFC3 (M_UV < -18) show metallicities ~0.1 Zsun even at z=7-8. Most of the simulated galaxies at z~7 (noticeably the smallest ones) are virtually dust-free, and none of them has an extinction larger than E(B-V) = 0.01. The bulk (50%) of the ionizing photons is produced by objects populating the faint-end of the LF (M_UV < -16), which JWST will resolve up to z=7.3. PopIII stars continue to form essentially at all redshifts; however, at z=6 (z=10) the contribution of Pop III stars to the total galactic luminosity is always less than 5% for M_UV < -17 (M_UV < -16). The typical high-z galaxies closely resemble the GRB host galaxy population observed at lower redshifts, strongly encouraging the use of GRBs to detect the first galaxies.
144 - D.L. Block 2001
Images from the Hubble Deep Field (HDF) North and South show a large percentage of dusty, high redshift galaxies whose appearance falls outside traditional classification systems. The nature of these objects is not yet fully understood. Since the HDF preferentially samples restframe UV light, HDF morphologies are not dust or `mask penetrated. The appearance of high redshift galaxies at near-infrared restframes remains a challenge for the New Millennium. The Next Generation Space Telescope (NGST) could routinely provide us with such images. In this contribution, we quantitatively determine the dust-penetrated structures of high redshift galaxies such as NGC 922 in their near-infrared restframes. We show that such optically peculiar objects may readily be classified using the dust penetrated z ~ 0 templates of Block and Puerari (1999) and Buta and Block (2001).
Using self-consistent cosmological simulations of disc galaxy formation, we analyse the 1.4 GHz radio flux from high-redshift progenitors of present-day normal spirals within the context of present-day and planned next-generation observational facilities. We demonstrate that while current radio facilities such as the Very Large Array (VLA) are unlikely to trace these progenitors beyond redshifts z<0.2, future facilities such as the Square Kilometer Array (SKA) will readily probe their characteristics to redshifts z<2, and are likely to provide detections beyond z~3. We also demonstrate that the progenitors of present-day cD galaxies can emit in excess of 10 uJy of flux at redshifts z>1, and may be a non-negligible contributor to the micro-Jansky source counts derived from current deep VLA cm-wave surveys.
59 - P. Kampczyk 2006
Simulations of nearby (0.015 < z < 0.025) SDSS galaxies have been used to reproduce as accurately as possible the appearance that they would have on COSMOS ACS images if they had been observed at z ~ 0.7 and z ~ 1.2. By adding the SDSS galaxies to random locations in the COSMOS images, we simulate the effects of chance superpositions of high redshift galaxies with unrelated foreground or background objects. We have used these simulated images, together with those of real COSMOS galaxies at these same redshifts, to undertake a blind morphological classification of galaxies to identify those that appear to be undergoing mergers and thus to estimate the change in merger fraction with redshift. We find that real mergers are harder to recognize at high redshift, and also that the chance superposition of unrelated galaxies often produces the appearance of mergers where in reality none exists. In particular, we estimate that 1.5 - 2.0% of objects randomly added to ACS images are misclassified as mergers due to projection with unrelated objects, and as a result, that 40% of the apparent mergers in COSMOS at z=0.7 are likely to be spurious. We find that the fraction of galaxies undergoing mergers increases as (1+z)^3.8+/-1.2 to z ~ 0.7 and that this trend appears to continue to z = 1.2. Merger candidates at z ~ 0.7 are bluer than the parent population, especially when the statistical effects of the chance projections are accounted for. Merger candidates are more asymmetric than the population as a whole, and are often associated with irregular morphology. Nevertheless, the majority (~60%) of the merger candidates appear to be associated with spiral galaxies although in this case we cannot correct for the effects of chance projections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا