No Arabic abstract
We present a new model for the creation of cool cores in rich galaxy clusters within a LambdaCDM cosmological framework using the results from high spatial dynamic range, adaptive mesh hydro/N-body simulations. It is proposed that cores of cool gas first form in subclusters and these subclusters merge to create rich clusters with cool, central X-Ray excesses. The rich cool clusters do not possess ``cooling flows due to the presence of bulk velocities in the intracluster medium in excess of 1000 km/sec produced by on-going accretion of gas from supercluster filaments. This new model has several attractive features including the presence of substantial core substructure within the cool cores, and it predicts the appearance of cool bullets, cool fronts, and cool filaments all of which have been recently observed with X-Ray satellites. This hierarchical formation model is also consistent with the observation that cool cores in Abell clusters occur preferentially in dense supercluster environments. On the other hand, our simulations overproduce cool cores in virtually all of our numerical clusters, the central densities are high, and physical core temperatures are often below 1 keV (in contrast to recent observations). We will discuss additional preliminary simulations to ``soften the cool cores involving star formation and supernova feedback.
We use XMM-Newton data to carry out a detailed study of the Si, Fe and Ni abundances in the cool cores of a representative sample of 26 local clusters. We have performed a careful evaluation of the systematic uncertainties related to the instruments, the plasma codes and the spectral modeling finding that the major source of uncertainty is in the plasma codes. Our Si, Fe, Ni, Si/Fe and Ni/Fe distributions feature only moderate spreads (from 20% to 30%) around their mean values strongly suggesting similar enrichment processes at work in all our cluster cores. Our sample averaged Si/Fe ratio is comparable to those measured in samples of groups and high luminosity ellipticals implying that the enrichment process in ellipticals, dominant galaxies in groups and BCGs in clusters is quite similar. Although our Si/Fe and Ni/Fe abundance ratios are fairly well constrained, the large uncertainties in the supernovae yields prevent us from making a firm assessment of the relative contribution of type Ia and core-collapsed supernovae to the enrichment process. All that can really be said with some certainty is that both contribute to the enrichment of cluster cores.
Clusters of galaxies are embedded in halos of optically thin, gravitationally stratified, weakly magnetized plasma at the systems virial temperature. Due to radiative cooling and anisotropic heat conduction, such intracluster medium (ICM) is subject to local instabilities, which are combinations of the thermal, magnetothermal and heat-flux-driven buoyancy instabilities. If the ICM rotates significantly, its stability properties are substantially modified and, in particular, also the magnetorotational instability (MRI) can play an important role. We study simple models of rotating cool-core clusters and we demonstrate that the MRI can be the dominant instability over significant portions of the clusters, with possible implications for the dynamics and evolution of the cool cores. Our results give further motivation for measuring the rotation of the ICM with future X-ray missions such as ASTRO-H and ATHENA.
We argue that the recently reported Kolmogorov-like magnetic turbulence spectrum in the cool core of the Hydra A galaxy cluster can be understood by kinetic energy injection by active galaxies that drives a turbulent non-helical magnetic dynamo into its saturated state. Although dramatic differences exist between small-scale dynamo scenarios, their saturated state is expected to be similar, as we show for three scenarios: the flux rope dynamo, the fluctuation dynamo, and the explosive dynamo. Based on those scenarios, we develop an analytical model of the hydrodynamic and magnetic turbulence in cool cores. The model implies magnetic field strengths that fit well with Faraday rotation measurements and minimum energy estimates for the sample of cool core clusters having such data available. Predictions for magnetic fields in clusters for which the appropriate observational information is still missing, and for yet unobserved quantities like the hydrodynamical turbulence velocity and characteristic length-scale are provided. The underlying dynamo models suggest magnetic intermittency and possibly a large-scale hydrodynamic viscosity. We conclude that the success of the model to explain the field strength in cool core clusters indicates that in general cluster magnetic fields directly reflect hydrodynamical turbulence, also in clusters without cool cores.
Our numerical simulations first demonstrate that the pressure of ISM in a major merger becomes so high ($>$ $10^5$ $rm k_{rm B}$ K $rm cm^{-3}$) that GMCs in the merger can collapse to form globular clusters (GCs) within a few Myr. The star formation efficiency within a GMC in galaxy mergers can rise up from a few percent to $sim$ 80 percent, depending on the shapes and the temperature of the GMC. This implosive GC formation due to external high pressure of warm/hot ISM can be more efficient in the tidal tails or the central regions of mergers. The developed clusters have King-like profile with the effective radius of a few pc. The structural, kinematical, and chemical properties of these GC systems can depend on orbital and chemical properties of major mergers.
We present a systematic study of gas density perturbations in cool cores of high-mass galaxy clusters. We select 12 relaxed clusters from the Cluster Lensing And Supernova survey with Hubble (CLASH) sample and analyze their cool core features observed with the Chandra X-ray Observatory. We focus on the X-ray residual image characteristics after subtracting their global profile of the X-ray surface brightness distribution. We find that all the galaxy clusters in our sample have, at least, both one positive and one negative excess regions in the X-ray residual image, indicating the presence of gas density perturbations. We identify and characterize the locally perturbed regions using our detection algorithm, and extract X-ray spectra of the intracluster medium (ICM). The ICM temperature in the positive excess region is lower than that in the negative excess region, whereas the ICM in both regions is in pressure equilibrium in a systematic manner. These results indicate that gas sloshing in cool cores takes place in more than 80% of relaxed clusters (95% CL). We confirm this physical picture by analyzing synthetic X-ray observations of a cool-core cluster from a hydrodynamic simulation, finding that our detection algorithm can accurately extract both the positive and negative excess regions and can reproduce the temperature difference between them. Our findings support the picture that the gas density perturbations are induced by gas sloshing, and a large fraction of cool-core clusters have undergone gas sloshing, indicating that gas sloshing may be capable of suppressing runaway cooling of the ICM.