Do you want to publish a course? Click here

The Effects of Age on Red Giant Metallicities Derived from the Near-Infrared Ca II Triplet

53   0   0.0 ( 0 )
 Added by Andrew Cole
 Publication date 2003
  fields Physics
and research's language is English
 Authors A.A. Cole




Ask ChatGPT about the research

We have obtained spectra with resolution 2.5 Angstroms in the region 7500-9500 Angstroms for 116 red giants in 5 Galactic globular clusters and 6 old open clusters (5 with published metallicities, and one previously unmeasured). The signal-to-noise ranges from 20 to 85. We measure the equivalent widths of the infrared Ca II triplet absorption lines in each stars and compare to cluster metallicities taken from the literature. With globular cluster abundances on the Carretta & Gratton scale, and open cluster abundances taken from the compilation of Friel and collaborators, we find a linear relation between [Fe/H] and Ca II line strength spanning the range -2 < [Fe/H] < -0.2 and ages from 2.5 - 13 Gyr. No evidence for an age effect on the metallicity calibration is observed. Using this calibration, we find the metallicity of the old open cluster Trumpler 5 to be [Fe/H] = -0.56 +/-0.11. Considering the 10 clusters of known metallicity shifted to a common distance and reddening, we find that the additional metallicity error introduced by the variation of horizontal branch/red clump magnitude with metallicity and age is of order +/-0.05 dex, which can be neglected in comparison to the intrinsic scatter in our method. The results are discussed in the context of abundance determinations for red giants in Local Group galaxies.



rate research

Read More

We extend our previous calibration of the infrared Ca II triplet as metallicity indicator to the metal-poor regime by including observations of 55 field stars with [Fe/H] down to -4.0 dex. While we previously solved the saturation at high-metallicity using a combination of a Lorentzian plus a Gaussian to reproduce the line profiles, in this paper we address the non-linearity at low-metallicity following the suggestion of Starkenburg et al 2010 of adding two non-linear terms to the relation among the [Fe/H], luminosity, and strength of the Calcium triplet lines. Our calibration thus extends from -4.0 to +0.5 in metallicity and is presented using four different luminosity indicators: V-V_{HB}, M_V, M_I, and M_K. The calibration obtained in this paper results in a tight correlation between [Fe/H] abundances measured from high resolution spectra and [Fe/H] values derived from the CaT, over the whole metallicity range covered.
114 - A.J. Cenarro 2001
We present an homogeneous set of stellar atmospheric parameters (Teff, log g, [Fe/H]) for a sample of about 700 field and cluster stars which constitute a new stellar library in the near-infrared developed for stellar population synthesis in this spectral region (8350-9020 Angstrom). Having compiled the available atmospheric data in the literature for field stars, we have found systematic deviations between the atmospheric parameters from different bibliographic references. The Soubiran, Katz & Cayrel (1998) sample of stars with very well determined fundamental parameters has been taken as our standard reference system, and other papers have been calibrated and bootstrapped against it. The obtained transformations are provided in this paper. Once most of the datasets were on the same system, final parameters were derived by performing error weighted means. Atmospheric parameters for cluster stars have also been revised and updated according to recent metallicity scales and colour-temperature relations.
We present a detailed analysis of the chemistry and kinematics of red giants in the dwarf irregular galaxy NGC 6822. Spectroscopy at 8500 Angstroms was acquired for 72 red giant stars across two fields using FORS2 at the VLT. Line of sight extinction was individually estimated for each target star to accommodate the variable reddening across NGC 6822. The mean radial velocity was found to be v_helio = (52.8 +/- 2.2) km/s with dispersion rms = 24.1 km/s, in agreement with other studies. Ca II triplet equivalent widths were converted into [Fe/H] metallicities using a V magnitude proxy for surface gravity. The average metallicity was [Fe/H] = (-0.84 +/- 0.04) with dispersion rms = 0.31 dex and interquartile range 0.48. Our assignment of individual reddening values makes our analysis more sensitive to spatial variations in metallicity than previous studies. We divide our sample into metal-rich and metal-poor stars; the former are found to cluster towards small radii with the metal-poor stars more evenly distributed across the galaxy. The velocity dispersion of the metal-poor stars is higher than that of the metal-rich stars; combined with the age-metallicity relation this indicates that older populations have either been dynamically heated or were born in a less disclike distribution. The low ratio (v_rot/v_rms) suggests that within the inner 10, NGC 6822s stars are dynamically decoupled from the HI gas, possibly in a thick disc or spheroid.
100 - A. J. Cenarro 2001
Using a near-IR stellar library of 706 stars with a wide coverage of atmospheric parameters, we study the behaviour of the Ca II triplet strength in terms of effective temperature, surface gravity and metallicity. Empirical fitting functions for recently defined line-strength indices, namely CaT*, CaT and PaT, are provided. These functions can be easily implemented into stellar populations models to provide accurate predictions for integrated Ca II strengths. We also present a thorough study of the various error sources and their relation to the residuals of the derived fitting functions. Finally, the derived functional forms and the behaviour of the predicted Ca II are compared with those of previous works in the field.
Optical Fe II emission is a strong feature in quasar spectra originating in the broad-line region (BLR). The difficulty in understanding the complex Fe II pseudo-continuum has led us to search for other reliable, simpler ionic species such as Ca II. In this first part of the series, we confirm the strong correlation between the strengths of two emission features, the optical Fe II and the NIR Ca II, both from observations and photoionization modelling. With the inclusion of an up-to-date compilation of observations with both optical Fe II and NIR Ca II measurements, we span a wider and more extended parameter space and confirm the common origin of these two spectral features with our photoionization models using CLOUDY. Taking into account the effect of dust into our modelling, we constrain the BLR parameter space (primarily, in terms of the ionization parameter and local cloud density) as a function of the strengths of Fe II and Ca II emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا