Do you want to publish a course? Click here

The bright optical afterglow of the nearby gamma-ray burst of 29 March 2003

83   0   0.0 ( 0 )
 Added by Paul Price
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many past studies of cosmological gamma-ray bursts (GRBs) have been limited because of the large distance to typical GRBs, resulting in faint afterglows. There has long been a recognition that a nearby GRB would shed light on the origin of these mysterious cosmic explosions, as well as the physics of their fireballs. However, GRBs nearer than z=0.2 are extremely rare, with an estimated rate of localisation of one every decade. Here, we report the discovery of bright optical afterglow emission from GRB 030329. Our prompt dissemination and the brilliance of the afterglow resulted in extensive followup (more than 65 telescopes) from radio through X-ray bands, as well as measurement of the redshift, z=0.169. The gamma-ray and afterglow properties of GRB 030329 are similar to those of cosmological GRBs (after accounting for the small distance), making this the nearest known cosmological GRB. Observations have already securely identified the progenitor as a massive star that exploded as a supernova, and we anticipate futher revelations of the GRB phenomenon from studies of this source.



rate research

Read More

Over the past five years evidence has mounted that long-duration (> 2 s) gamma-ray bursts (GRBs)--the most brilliant of all astronomical explosions--signal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova, but now includes the association of GRBs with regions of massive star formation in distant galaxies, the appearance of supernova-like bumps in the optical afterglow light curves of several bursts and lines of freshly synthesized elements in the spectra of a few X-ray afterglows. These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that a very energetic supernova (a hypernova) was temporally and spatially coincident with a GRB at redshift z = 0.1685. The timing of the supernova indicates that it exploded within a few days of the GRB, strongly suggesting that core-collapse events can give rise to GRBs, thereby favouring the collapsar model.
The optical light that is generated simultaneously with the x-rays and gamma-rays during a gamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse to form black holes. We report on the bright optical flash and fading afterglow from the powerful burst GRB 130427A and present a comparison with the properties of the gamma-ray emission that show correlation of the optical and >100 MeV photon flux light curves during the first 7,000 seconds. We attribute this correlation to co-generation in an external shock. The simultaneous, multi-color, optical observations are best explained at early times by reverse shock emission generated in the relativistic burst ejecta as it collides with surrounding material and at late times by a forward shock traversing the circumburst environment. The link between optical afterglow and >100 MeV emission suggests that nearby early peaked afterglows will be the best candidates for studying GRB emission at GeV/TeV energies.
It has long been known that there are two classes of gamma-ray bursts (GRBs), mainly distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (those lasting more than ~2 s), which ultimately linked them with energetic Type Ic supernovae, came from the discovery of their long-lived X-ray and optical afterglows, when precise and rapid localizations of the sources could finally be obtained. X-ray localizations have recently become available for short (duration <2 s) GRBs, which have evaded optical detection for more than 30 years. Here we report the first discovery of transient optical emission (R-band magnitude ~23) associated with a short burst; GRB 050709. The optical afterglow was localized with subarcsecond accuracy, and lies in the outskirts of a blue dwarf galaxy. The optical and X-ray afterglow properties 34 h after the GRB are reminiscent of the afterglows of long GRBs, which are attributable to synchrotron emission from ultrarelativistic ejecta. We did not, however, detect a supernova, as found in most nearby long GRB afterglows, which suggests a different origin for the short GRBs.
112 - Carole G. Mundell 2007
We report the optical polarization of a gamma ray burst (GRB) afterglow, obtained 203 seconds after the initial burst of gamma rays from GRB 060418, using a ring polarimeter on the robotic Liverpool Telescope. Our robust (2-sigma) upper limit on the percentage of polarization, less than 8%, coincides with the fireball deceleration time at the onset of the afterglow. The combination of the rate of decay of the optical brightness and the low polarization at this critical time constrains standard models of GRB ejecta, ruling out the presence of a large-scale ordered magnetic field in the emitting region.
406 - P. Meszaros 1998
We discuss the formation of spectral features in the decelerating ejecta of gamma-ray bursts, including the possible effect of inhomogeneities. These should lead to blueshifted and broadened absorption edges and resonant features, especially from H and He. An external neutral ISM could produce detectable H and He, as well as Fe X-ray absorption edges and lines. Hypernova scenarios may be diagnosed by Fe K-$alpha$ and H Ly-$alpha$ emission lines.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا