No Arabic abstract
We have initiated a spectral line survey, at a wavelength of 3 millimeters, toward the hot molecular core Sagittarius B2(N-LMH). This is the first spectral line survey of the Sgr B2(N) region utilizing data from both an interferometer (BIMA Array) and a single-element radio telescope (NRAO 12 meter). In this survey, covering 3.6 GHz in bandwidth, we detected 218 lines (97 identified molecular transitions, 1 recombination line, and 120 unidentified transitions). This yields a spectral line density (lines per 100 MHz) of 6.06, which is much larger than any previous 3 mm line survey. We also present maps from the BIMA Array that indicate that most highly saturated species (3 or more H atoms) are products of grain chemistry or warm gas phase chemistry. Due to the nature of this survey we are able to probe each spectral line on multiple spatial scales, yielding information that could not be obtained by either instrument alone.
We have conducted a spectral line survey in the 3 mm and 2 mm bands toward two positions in a spiral arm of M51 (NGC 5194) with the IRAM 30 m telescope. In this survey, we have identified 13 molecular species, including CN, CCH, N2H+, HNCO, and CH3OH. Furthermore, 6 isotopologues of the major species have been detected. On the other hand, SiO, HC3N, CH3CN, and the deuterated species such as DCN and DCO+ are not detected. The deuterium fractionation ratios are evaluated to be less than 0.8 % and 1.2 % for DCN/HCN and DCO+/HCO+, respectively. By comparing the results of the two positions with different star formation activities, we have found that the observed chemical compositions do not strongly depend on star formation activities. They seem to reflect a chemical composition averaged over the 1-kpc scale region including many giant molecular clouds. Among the detected molecules CN, CCH, and CH3OH are found to be abundant. High abundances of CN, and CCH are consistent with the above picture of a wide spread distribution of molecules, because they can be produced by photodissociation. On the other hand, it seems likely that CH3OH is liberated into the gas phase by shocks associated with large scale phenomena such as cloud-cloud collisions and/or by non-thermal desorption processes such as photoevaporation due to cosmic-ray induced UV photons. The present result demonstrates a characteristic chemical composition of a giant molecular cloud complex in the spiral arm, which can be used as a standard reference for studying chemistry in AGNs and starbursts.
We report the detection of Voigt spectral line profiles of radio recombination lines (RRLs) toward Sagittarius B2(N) with the 100-m Green Bank Telescope (GBT). At radio wavelengths, astronomical spectra are highly populated with RRLs, which serve as ideal probes of the physical conditions in molecular cloud complexes. An analysis of the Hn(alpha) lines presented herein shows that RRLs of higher principal quantum number (n>90) are generally divergent from their expected Gaussian profiles and, moreover, are well described by their respective Voigt profiles. This is in agreement with the theory that spectral lines experience pressure broadening as a result of electron collisions at lower radio frequencies. Given the inherent technical difficulties regarding the detection and profiling of true RRL wing spans and shapes, it is crucial that the observing instrumentation produce flat baselines as well as high sensitivity, high resolution data. The GBT has demonstrated its capabilities regarding all of these aspects, and we believe that future observations of RRL emission via the GBT will be crucial towards advancing our knowledge of the larger-scale extended structures of ionized gas in the interstellar medium (ISM).
Spectral line survey observations are conducted toward the high-mass protostar candidate NGC 2264 CMM3 in the 4 mm, 3 mm, and 0.8 mm bands with the Nobeyama 45 m telescope and the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope. In total, 265 emission lines are detected in the 4 mm and 3 mm bands, and 74 emission lines in the 0.8 mm band. As a result, 36 molecular species and 30 isotopologues are identified. In addition to the fundamental molecular species, many emission lines of carbon-chain molecules such as HC5N, C4H, CCS, and C3S are detected in the 4 mm and 3 mm bands. Deuterated molecular species are also detected with relatively strong intensities. On the other hand, emission lines of complex organic molecules such as HCOOCH3, and CH3OCH3 are found to be weak. For the molecules for which multiple transitions are detected, rotation temperatures are derived to be 7-33 K except for CH3OH. Emission lines with high upper-state energies (Eu > 150 K) are detected for CH3OH, indicating existence of a hot core. In comparison with the chemical composition of the Orion KL, carbon-chain molecules and deuterated molecules are found to be abundant in NGC 2264 CMM3, while sulfur-bearing species and complex organic molecules are deficient. These characteristics indicate chemical youth of NGC 2264 CMM3 in spite of its location at the center of the cluster forming core, NGC 2264 C.
Using the Mopra telescope, we have undertaken a 3-mm spectral-line imaging survey of a 5 x 5 arcmin^2 area around Sgr B2. We covered almost the complete spectral the range from 81.7 to 113.5 GHz, with 2.2 MHz wide spectral channels or ~ 6 km/s, and have observed 24 lines, with 0.033 MHz wide, or ~ 0.1 km/s channels. We discuss the distribution of around 50 lines, and present velocity-integrated emission images for 38 of the lines. In addition, we have detected around 120 more lines, mostly concentrated at the particularly spectral line-rich Sgr B2(N) source. There are significant differences in molecular emission, pointing to both abundance and excitation differences throughout the region. Seven distinct spatial locations are identified for the emitting species, including peaks near the prominent star forming cores of Sgr B2(N), (M) and (S) that are seen in IR-to-radio continuum images. The other features are a North Ridge and a North Cloud to the north of the Sgr B2 N-M-S cores, a South-East Peak and a West Ridge. The column density, as evident through C^{18}O, peaks at the Sgr B2(N) and (M) cores, where strong absorption is also evident in otherwise generally bright lines such as HCO^{+}, HCN and HNC. Most molecules trace a ridge line to the west of the Sgr B2 N-M-S cores, wrapping around the cores and extending NE to the North Cloud. This is most clearly evident in the species HC_{3}N, CH_{3}CN, CH_{3}OH and OCS. They are found to be closer in distribution to the cooler dust traced by the sub-mm continuum than either the warmer dust seen in the mid-IR or to the radio continuum. The molecule CN, in contrast, is reasonably uniform over the entire region mapped, aside from strong absorption at the positions of the Sgr B2(N) and (M) cores.
We conduct spectral line survey observations in the 3 mm band toward a spiral arm, a bar-end, and a nuclear region of the nearby barred spiral galaxy NGC 3627 with the IRAM 30 m telescope and the Nobeyama 45 m telescope. Additional observations are performed toward the spiral arm and the bar-end in the 2 mm band. We detect 8, 11, and 9 molecular species in the spiral arm, the bar-end, and the nuclear region, respectively. Star-formation activities are different among the three regions, and in particular, the nucleus of NGC 3627 is known as a LINER/Seyfert 2 type nucleus. In spite of these physical differences, the chemical composition shows impressive similarities among the three regions. This result means that the characteristic chemical composition associated with these regions is insensitive to the local physical conditions such as star formation rate, because such local effects are smeared out by extended quiescent molecular gas on scales of 1 kpc. Moreover, the observed chemical compositions are also found to be similar to those of molecular clouds in our Galaxy and the spiral arm of M51, whose elemental abundances are close to those in NGC 3627. Therefore, this study provides us with a standard template of the chemical composition of extended molecular clouds with the solar metalicity in nearby galaxies.