Do you want to publish a course? Click here

The Standard Candle Method for Type II Supernovae and the Hubble Constant

93   0   0.0 ( 0 )
 Added by Mario Hamuy
 Publication date 2003
  fields Physics
and research's language is English
 Authors Mario Hamuy




Ask ChatGPT about the research

The standard candle method for Type II plateau supernovae produces a Hubble diagram with a dispersion of 0.3 mag, which implies that this technique can produce distances with a precision of 15%. Using four nearby supernovae with Cepheid distances I find Ho(V)=75+/-7, and Ho(I)=65+/-12.



rate research

Read More

Although Type Ia supernova cosmology has now reached a mature state, it is important to develop as many independent methods as possible to understand the true nature of dark energy. Recent studies have shown that Type II supernovae (SNe II) offer such a path and could be used as alternative distance indicators. However, the majority of these studies were unable to extend the Hubble diagram above redshift $z=0.3$ because of observational limitations. Here, we show that we are now ready to move beyond low redshifts and attempt high-redshift ($z gtrsim 0.3$) SN~II cosmology as a result of new-generation deep surveys such as the Subaru/Hyper Suprime-Cam (HSC) survey. Applying the standard candle method to SN$sim$2016jhj ($z=0.3398 pm 0.0002$; discovered by HSC) together with a low-redshift sample, we are able to construct the highest-redshift SN II Hubble diagram to date with an observed dispersion of 0.27 mag (i.e., 12-13% in distance). This work demonstrates the bright future of SN~II cosmology in the coming era of large, wide-field surveys like that of the Large Synoptic Survey Telescope.
We apply the Standardized Candle Method (SCM) for Type II Plateau supernovae (SNe II-P), which relates the velocity of the ejecta of a SN to its luminosity during the plateau, to 15 SNe II-P discovered over the three season run of the Sloan Digital Sky Survey - II Supernova Survey. The redshifts of these SNe - 0.027 < z < 0.144 - cover a range hitherto sparsely sampled in the literature; in particular, our SNe II-P sample contains nearly as many SNe in the Hubble flow (z > 0.01) as all of the current literature on the SCM combined. We find that the SDSS SNe have a very small intrinsic I-band dispersion (0.22 mag), which can be attributed to selection effects. When the SCM is applied to the combined SDSS-plus-literature set of SNe II-P, the dispersion increases to 0.29 mag, larger than the scatter for either set of SNe separately. We show that the standardization cannot be further improved by eliminating SNe with positive plateau decline rates, as proposed in Poznanski et al. (2009). We thoroughly examine all potential systematic effects and conclude that for the SCM to be useful for cosmology, the methods currently used to determine the Fe II velocity at day 50 must be improved, and spectral templates able to encompass the intrinsic variations of Type II-P SNe will be needed.
Progressive increases in the precision of the Hubble-constant measurement via Cepheid-calibrated Type Ia supernovae (SNe Ia) have shown a discrepancy of $sim 4.4sigma$ with the current value inferred from Planck satellite measurements of the cosmic microwave background radiation and the standard $Lambda$CDM cosmological model. This disagreement does not appear to be due to known systematic errors and may therefore be hinting at new fundamental physics. Although all of the current techniques have their own merits, further improvement in constraining the Hubble constant requires the development of as many independent methods as possible. In this work, we use SNe II as standardisable candles to obtain an independent measurement of the Hubble constant. Using 7 SNe II with host-galaxy distances measured from Cepheid variables or the tip of the red giant branch, we derive H$_0= 75.8^{+5.2}_{-4.9}$ km s$^{-1}$ Mpc$^{-1}$ (statistical errors only). Our value favours that obtained from the conventional distance ladder (Cepheids + SNe Ia) and exhibits a difference of 8.4 km s$^{-1}$ Mpc$^{-1}$ from the Planck $+Lambda$CDM value. Adding an estimate of the systematic errors (2.8 km s$^{-1}$ Mpc$^{-1}$) changes the $sim 1.7sigma$ discrepancy with Planck $+Lambda$CDM to $sim 1.4sigma$. Including the systematic errors and performing a bootstrap simulation, we confirm that the local H$_0$ value exceeds the value from the early Universe with a confidence level of 95%. As in this work we only exchange SNe II for SNe Ia to measure extragalactic distances, we demonstrate that there is no evidence that SNe Ia are the source of the H$_0$ tension.
The most precise local measurements of $H_0$ rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing $H_0$ to the value inferred from CMB observations assuming $Lambda$CDM, making it important to check for potential systematic uncertainties in either approach. To date, precise local $H_0$ measurements have used SN Ia distances based on optical photometry, with corrections for light curve shape and colour. Here, we analyse SNe Ia as standard candles in the near-infrared (NIR), where intrinsic variations in the supernovae and extinction by dust are both reduced relative to the optical. From a combined fit to 9 nearby calibrator SNe with host Cepheid distances from Riess et al. (2016) and 27 SNe in the Hubble flow, we estimate the absolute peak $J$ magnitude $M_J = -18.524;pm;0.041$ mag and $H_0 = 72.8;pm;1.6$ (statistical) $pm$ 2.7 (systematic) km s$^{-1}$ Mpc$^{-1}$. The 2.2 $%$ statistical uncertainty demonstrates that the NIR provides a compelling avenue to measuring SN Ia distances, and for our sample the intrinsic (unmodeled) peak $J$ magnitude scatter is just $sim$0.10 mag, even without light curve shape or colour corrections. Our results do not vary significantly with different sample selection criteria, though photometric calibration in the NIR may be a dominant systematic uncertainty. Our findings suggest that tension in the competing $H_0$ distance ladders is likely not a result of supernova systematics that could be expected to vary between optical and NIR wavelengths, like dust extinction. We anticipate further improvements in $H_0$ with a larger calibrator sample of SNe Ia with Cepheid distances, more Hubble flow SNe Ia with NIR light curves, and better use of the full NIR photometric data set beyond simply the peak $J$-band magnitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا