Do you want to publish a course? Click here

Composition of the Chandra ACIS contaminant

73   0   0.0 ( 0 )
 Added by Herman L. Marshall
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory is suffering a gradual loss of low energy sensitivity due to a buildup of a contaminant. High resolution spectra of bright astrophysical sources using the Chandra Low Energy Transmission Grating Spectrometer (LETGS) have been analyzed in order to determine the nature of the contaminant by measuring the absorption edges. The dominant element in the contaminant is carbon. Edges due to oxygen and fluorine are also detectable. Excluding H, we find that C, O, and F comprise >80%, 7%, and 7% of the contaminant by number, respectively. Nitrogen is less than 3% of the contaminant. We will assess various candidates for the contaminating material and investigate the growth of the layer with time. For example, the detailed structure of the C-K absorption edge provides information about the bonding structure of the compound, eliminating aromatic hydrocarbons as the contaminating material.



rate research

Read More

353 - Knox S. Long 2014
We have obtained a series of deep X-ray images of the nearby galaxy M83 using Chandra, with a total exposure of 729 ks. Combining the new data with earlier archival observations totaling 61 ks, we find 378 point sources within the D25 contour of the galaxy. We find 80 more sources, mostly background AGN, outside of the D25 contour. Of the X-ray sources, 47 have been detected in a new radio survey of M83 obtained using the Australia Telescope Compact Array. Of the X-ray sources, at least 87 seem likely to be supernova remnants (SNRs), based on a combination of their properties in X-rays and at other wavelengths. We attempt to classify the point source population of M83 through a combination of spectral and temporal analysis. As part of this effort, we carry out an initial spectral analysis of the 29 brightest X-ray sources. The soft X-ray sources in the disk, many of which are SNRs, are associated with the spiral arms, while the harder X-ray sources, mostly X-ray binaries (XRBs), do not appear to be. After eliminating AGN, foreground stars and identified SNRs from the sample, we construct the cumulative luminosity function (CLF) of XRBs brighter than 8 10$^{35}$ ergs/s. Despite M83s relatively high star formation rate, the CLF indicates that most of the XRBs in the disk are low mass XRBs.
This study presents the final source catalog of the Chandra ACIS Survey of M33 (ChASeM33). With a total exposure time of 1.4 Ms, ChASeM33 covers ~70% of the D25 isophote (Rapprox4kpc) of M33 and provides the deepest, most complete, and detailed look at a spiral galaxy in X-rays. The source catalog includes 662 sources, reaches a limiting unabsorbed luminosity of ~2.4x10^(34) erg/s in the 0.35-8.0keV energy band, and contains source positions, source net counts, fluxes and significances in several energy bands, and information on source variability. The analysis challenges posed by ChASeM33 and the techniques adopted to address these challenges are discussed. To constrain the nature of the detected X-ray source, hardness ratios were constructed and spectra were fit for 254 sources, followup MMT spectra of 116 sources were acquired, and cross-correlations with previous X-ray catalogs and other multi-wavelength data were generated. Based on this effort, 183 of the 662 ChASeM33 sources could be identified. Finally, the luminosity function for the detected point sources as well as the one for the X-ray binaries in M33 is presented. The luminosity functions in the soft band (0.5-2.0 keV) and the hard band (2.0-8.0 keV) have a limiting luminosity at the 90% completeness limit of 4.0x10^(34) erg/s and 1.6x10^(35) erg/s (for D=817kpc), respectively, which is significantly lower than what was reported by previous X-ray binary population studies in galaxies more distant than M33. The resulting distribution is consistent with a dominant population of high mass X-ray binaries as would be expected for M33.
We present an overview of the Chandra ACIS Survey of M33 (ChASeM33): A Deep Survey of the Nearest Face-on Spiral Galaxy. The 1.4 Ms survey covers the galaxy out to $R approx 18arcmin (approx 4$ kpc). These data provide the most intensive, high spatial resolution assessment of the X-ray source populations available for the confused inner regions of M33. Mosaic images of the ChASeM33 observations show several hundred individual X-ray sources as well as soft diffuse emission from the hot interstellar medium. Bright, extended emission surrounds the nucleus and is also seen from the giant hii regions NGC 604 and IC 131. Fainter extended emission and numerous individual sources appear to trace the inner spiral structure. The initial source catalog, arising from $sim$~2/3 of the expected survey data, includes 394 sources significant at the $3sigma$ confidence level or greater, down to a limiting luminosity (absorbed) of $sim$1.6ergs{35} (0.35 -- 8.0 keV). The hardness ratios of the sources separate those with soft, thermal spectra such as supernova remnants from those with hard, non-thermal spectra such as X-ray binaries and background active galactic nuclei. Emission extended beyond the Chandra point spread function is evident in 23 of the 394 sources. Cross-correlation of the ChASeM33 sources against previous catalogs of X-ray sources in M33 results in matches for the vast majority of the brighter sources and shows 28 ChASeM33 sources within 10arcsec of supernova remnants identified by prior optical and radio searches. This brings the total number of such associations to 31 out of 100 known supernova remnants in M33.
92 - V. La Parola 2002
We have analyzed a 90 ksec long observation of the bright nucleus of M33 made with Chandra/ACIS. We detected low-amplitude (~sim10%) highly significant variability on timescales of ~5000 sec. We also find associated spectral variability. The two main spectral components (a power-law with Gamma~2 and a multicolor disk -MCD- with kT~0.9-1.2 keV) vary in relative flux. The MCD temperature also increases with increasing MCD flux. The pattern of variability is reminiscent of (but not identical to) galactic black hole binaries. A ~5 M$_{odot}$ accreting black hole may explain this source.
After launch, the Advanced CCD Imaging Spectrometer (ACIS), a focal plane instrument on the Chandra X-ray Observatory, suffered radiation damage from exposure to soft protons during passages through the Earths radiation belts. An effect of the damage was to increase the charge transfer inefficiency (CTI) of the front illuminated CCDs. As part of the initial damage assessment, the focal plane was warmed from the operating temperature of -100C to +30C which unexpectedly further increased the CTI. We report results of ACIS CCD irradiation experiments in the lab aimed at better understanding this reverse annealing process. Six CCDs were irradiated cold by protons ranging in energy from 100 keV to 400 keV, and then subjected to simulated bakeouts in one of three annealing cycles. We present results of these lab experiments, compare them to our previous experiences on the ground and in flight, and derive limits on the annealing time constants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا